

Laboratório Nacional de Ciência e Tecnologia do Bioetanol

Pretreatment interactions with the multiscale architecture of sugarcane bagasse

Carlos Driemeier (carlos.driemeier@ctbe.cnpem.br) Brazilian Bioethanol Science and Technology Laboratory – CTBE Brazilian Center for Research in Energy and Materials - CNPEM

Workshop on Second Generation Bioethanol and Biorefining 2017 November 29th, 2017

From macro to nano

 ≈3 nm: width of cellulose crystal, the cell wall building block.

Microtomography of a bagasse particle (Isaac, Sket, Driemeier & Rocha, 2013)

≈5 nm: enzyme

Lignocellulose hierarchical nanostructure

- cellulose crystal (3-5 nm width)
- fibrillar aggregate (10-40 nm width)
- lamella (10-40 nm thickness)
- cell wall thickness
- cell
- particle

How to deconstruct?

Fahlén and Salmén, 2005

Outline

• Nano changes in hydrothermal pretreatments

- Nano changes in mild alkaline pretreatments
- Mineral particles observed by microtomography

Nano changes in hydrothermal pretreatments

Opening of nanoscale pores

Cellulose co-crystallization

Lignin aggregation

Ciesielski et al. 2014

Langan et al. 2014; Pingali et al. 2014

X-ray diffraction of sugarcane bagasse

isolated particle

experimental

set-up

2D modelling

powder in capillary tube

D

Increasing cellulose crystal width (co-crystallization)

Driemeier, Pimenta, Rocha, et al. 2011

>width \Rightarrow >#cellulose chains

Hydrothermal treatments (160-190°C)

Driemeier, Mendes, Santucci, Pimenta 2015

Calorimetric thermoporometry determination of water in nano-confinement

Principle: melting of confined ice temperature \rightarrow pore diameter heat \rightarrow mass of confined ice

Hydrothermal, delignification, and porosity

Driemeier, Oliveira, Curvelo 2016

Hydrothermal and delignification increase nano porosity.

Hydrothermal has thermoporometric signature (@ FBW <4 nm).

lignin \leftrightarrow pores <4 nm

Nano-irregularities at the surface of lignin aggregates

Petridis et al. 2011

Porosity <4 nm:

- correlated with lignin content
- removed by delignification

Outline

- Nano changes in hydrothermal pretreatments
- Nano changes in mild alkaline pretreatments
- Mineral particles observed by microtomography

Limits of hydrothermal pretreatments (similar for dilute acid!)

Water only – no catalyst recovery

Reactor high CAPEX

Reactor complex operation

Liquor toxicity

Lignin condensation

DDR/DMR route for cellulosic ethanol

Mild chemistry 0.4% m/m NaOH, 2h, 80C

Specialized mechanics

1) Disk refining (cut and shear) 2) Moinho Szego (crush)

Atmospheric pressure

Chen X, Kuhn E, Jennings EW, et al (2016) Energy Environ Sci. doi: 10.1039/C5EE03718B

Alkaline deacetylation in comparison

NaOH recovery

Reactor high CAPEX

Reactor complex operation

Liquor toxicity

Lignin condensation

Nanoscale cohesion

Comparing nano changes

Hydrothermal

Alkaline deacetylation

Driemeier, Mendes, Santucci, Pimenta 2015

Lima, Rabelo, Ciesielski, Roberto, Rocha, Driemeier (submitted)

Outline

- Nano changes in hydrothermal pretreatments
- Nano changes in mild alkaline pretreatments
- Mineral particles observed by microtomography

Mineral particles in bagasse

Exposure: 200-350 ms, 1001 projections Voxel 0.82 µm F. View: 1.6 mm

X-ray projection

Mineral particles

Screw feeder Reactor @ CTBE pilot plant

3D visualization: minerals in bagasse

Caballero, Ling, Archilha, Ferreira, Driemeier (2017)

Particle cross-section

Caballero, Ling, Archilha, Ferreira, Driemeier (2017)

Mineral particle morphometry

Mineral particle localization

	Macro location			Total
Cell type	External	Crack	Tissue	(all macro locations)
	Surface	surface	interior	(
Parenchyma (round)	4	14	33	51
Parenchyma (smashed)	8	26	37	71
VB fibers	0	0	8	8
Xylem vessel	0	2	2	4
Epidermis region	5	0	2	7
Undetermined	117	90	5	212
Total (all cell types)	134	132	87	353

Summary

- Nano changes in hydrothermal pretreatments
 - Opening of nanoscale pores
 - Cellulose aggregation/co-crystallization
 - Lignin aggregation
- Nano changes in mild alkaline pretreatments
 - Opening of nanoscale pores
 - No cellulose co-crystallization. No lignin aggregation
- Mineral particles in sugarcane bagasse
 - Major problem in biomass valorization
 - Non-invasive visualization (353 mineral particles)
 - Locations: external surfaces, crack surfaces, inside parenchyma
 - Biomass size, mineral size, soil mineralogy

Acknowledgements

Mineral particles

Daison Yancy-Caballero

Liu Y. Ling

Bruna Goes

Prof. João E. Ferreira (IME-USP) Nathaly L. Archilha (LNLS-CNPEM) LNLS/IMX beamline staff

Alkaline deacetylation

Cleilton Lima Sarita Rabelo Peter Ciesielski (NREL) Prof. Inês Roberto (EEL-USP) Prof. George Rocha (EEL-USP)

Hydrothermal

Marcelo Oliveira Fernanda Mendes Beatriz Santucci Maria Teresa Pimenta Prof. Aprigio Curvelo (IQSC-USP)

Laboratório Nacional de Ciência e Tecnologia do Bioetanol

Pretreatment interactions with the multiscale architecture of sugarcane bagasse

Carlos Driemeier (carlos.driemeier@ctbe.cnpem.br) Brazilian Bioethanol Science and Technology Laboratory – CTBE Brazilian Center for Research in Energy and Materials - CNPEM

Workshop on Second Generation Bioethanol and Biorefining 2017 November 29th, 2017