Managing Crop Residues for Productivity, Ecosystem Services and the Bio-Economy

Presented at the 2017 CTBE Workshop November 29 – 30, 2017 Campinas, Brazil

Douglas L. Karlen USDA-Agricultural Research Service (ARS) National Laboratory for Agriculture & the Environment (NLAE) Ames, Iowa 50011-3611 USA

18 Years of Corn Stover Research Shows That:

Management challenges such as lower soil temperature and N immobilization may cause some people to refer to crop residues as "trash" but in reality they are critical resources that provide many ecosystem services

- Managing soil organic carbon (SOC) is crucial and requires more residue (C) input than erosion control
- Therefore, crop residue removal or harvest rates must not exceed sustainable, site-specific levels
- Adopting reduced- or no-tillage practices and adding cover crops will improve the sustainability of stover harvest

Why Managing SOC is Crucial

 Δ SOC = input - output

Research focused on quantifying limiting factors, so we can develop effective agronomic strategies for delivering sustainable feedstock supplies

Excessive Stover Harvest Leaves soil vulnerable to wind and water erosion Depletes food supply for soil microorganisms Depletes soil organic matter, negatively impacting water &

Stover Harvest vs Tillage Effects on Surface Cover

Soil Surface Cover Prior to Spring Tillage & Planting

~40% stover harvest followed by fall tillage and winter weathering

23% surface cave

No stover harvest followed by fall tillage and winter weathering

Reduce Tillage Intensity By Using Cover Crops

Roller-crimper to kill cover crop

No cover crop

Harvested cover crop

Potential cover crops – cereal rye, triticale, spring oat, tillage radish, pea, & other species

Potential Cover Crop Species

Tillage Radish

Kura clover – living mulch

Cereal Rye

My Cellulosic Feedstock Research Began in 1979

The initial stover harvest studies were conducted in the southeastern U.S. on Norfolk loamy sand

The A2 or E horizon impaired root growth and limited yields

Conventional and conservation tillage planting equipment had to be equipped with in-row subsoil shanks to physically disrupt the E horizon

Initial Feedstocks and Planting Improvements

Corn stover and winter rye were both harvested as potential bioenergy feedstocks

Using a flail chopper resulted in high contamination with soil (ash)

Conservation tillage equipment however, improved significantly

Single-Pass Technologies 2005 – 2015

2005

2009 - 2012

2013 - 2015

Site-Specific Harvest Increases Sustainability of Cellulosic Feedstock Production

Our 2005 to 2015 studies with a single-pass John Deere harvesting system enabled us to differentially harvest corn stover and then vary the post-harvest tillage depth using real-time GPS, yield monitors and the RUSLE2 soil erosion model.

Our harvest speed (max. 3 mph) was the limiting factor so in 2016 we switched to the CornRower[™] system which should have sitespecific capabilities by 2018

Summary and Conclusions

- Harvesting corn stover and other crop residues is not a new concept – it's been a common farming practice for centuries
 - > What's new is its use as a bio-economy feedstock
- Crop residues have many roles including protection against soil erosion, provision of soil carbon, and cycling of plant nutrients
- Nutrient management research shows that "Balance is the key"
- ➤ For sustainable feedstock production, corn grain yields should be ≥11 Mg ha⁻¹
 - That grain yield will provide at least 4 Mg ha⁻¹ for soil protection

The Ultimate Goal: Healthy Soils \rightarrow Healthy Landscapes \rightarrow Vibrant Bio-Economies