DESENVOLVIMENTO, CARACTERIZAÇÃO E BRASAGEM DE COMPÓSITOS DE COBRE ENDURECIDOS COM NANOPARTÍCULAS DE AI₂O₃

Grupo de Materiais

1. Introdução:

Um dos metais mais utilizados atualmente, seja puro ou através de suas ligas, em aplicações que exigem elevada condutividade térmica e elétrica, aliada a uma resistência a corrosão apreciável, é o cobre. Embora sua resistência mecânica seja relativamente baixa, se comparado a outros metais, suas ligas são amplamente utilizadas em aplicações tecnológicas que vão desde componentes elétricos em reles convencionais até absorvedores de elétrons e fótons em aceleradores síncrotrons [1,2].

A utilização do cobre é limitada para aplicações estruturais, pois para isso é necessário que o material possua elevada resistência mecânica. No caso do cobre, esta propriedade fica ainda mais comprometida quando este é submetido a processos de união a outros materiais em altas temperaturas, pois a recristalização e crescimento de grãos do cobre ocorrem em temperaturas relativamente baixas, isto é, abaixo da temperatura de fusão das ligas de adição [3]. Desta forma, sua resistência mecânica fica ainda mais comprometida.

Em razão disto, tem-se estudado uma série de alternativas para o problema. Uma solução é o endurecimento do cobre por elementos de liga, porém este processo pode causar uma significante perda de condutividade elétrica [3]. Outra possibilidade é o endurecimento pela incorporação de partículas finas de uma segunda fase, resultando somente numa diminuição relativamente pequena da condutividade elétrica [3]. Esta segunda fase pode ser um metal, um composto intermetálico, precipitados de uma solução sólida por um tratamento de envelhecimento, ou ainda por partículas não metálicas, adicionadas ou formadas com a matriz de cobre [3,4], como por exemplo, alumina (Al₂O₃).

Compósitos de cobre endurecidos através da adição de partículas de óxidos estáveis, como a alumina, não promovem o crescimento ou dissolução de tais partículas na matriz metálica, desta forma é possível manter as características iniciais do material mesmo após ciclos de aquecimento [5].

O ESRF (European Synchrotron Radiation Facility), APS (Argonne Nacional Laboratory) e o Illiniois Institute of Technology realizaram estudos comparativos da vida em fadiga térmica do compósito e do cobre OFHC (Oxigen Free High Condutivity). Os resultados mostraram que além do compósito possuir um significativo limite de escoamento, excelente limite de tração, resistência a fadiga e resistência a ruptura a elevadas temperaturas, se comparado ao cobre OFHC; ainda possui uma resistência a ciclos térmicos muito superior e por isso é amplamente empregado na fabricação de componentes para aceleradores síncrotrons [6].

No LNLS será possível fabricar componentes para o anel de luz síncrotron e linhas de luz como *photon shutters*, espelhos para raios-x, máscaras refrigeradas, resfriadores de espelhos, guias de ondas, cavidades de radiofreqüência, entre outros. Tais componentes já são fabricados com o referido material, por exemplo, no *Argonne Nacional Laboratory*, Illinois – EUA [7] e *European Synchrotron Radiation Facility* (ESRF)– França [8] e *European Organization for Nuclear Research (CERN)* – Suíça [9].

2. Objetivo:

O projeto tem como principal objetivo desenvolver, qualificar corpos de prova de um compósito de matriz metálica (cobre) endurecidos com nanopartículas de alumina.

3. Metodologia

Dentro desta atividade, caberá ao aluno:

- Pesquisa sobre o tema e revisão bibliográfica;
- Montagem do forno de H₂ para obtenção de pó de cobre reduzido;
- Testes de obtenção de $Cu+Al_2O_3$ a partir de CuO e $Al(NO_3)_3$, por rota química, e redução em forno de H_2 ;
- Ensaios de sinterização para obtenção de corpos de prova sem porosidade. Testes de carga, temperatura e tempo;
 - Análise microestrutural e ensaios mecânicos dos corpos de prova obtidos;
- Análise de FEG para verificar a dispersão das nanopartículas de alumina na matriz de cobre:
 - Definição dos parâmetros para obtenção do compósito;
 - Elaboração de relatórios e participação em artigos.

4. Referências:

- [1] Bagnato O. R., Francisco F. R., Gabos C. B., Pardine C., Brasagem Metal/Metal e Metal/Cerâmica para Fabricação dos Guias de Onda e Monitores de Potência do LINAC do Anel no Lnls. XXVII Congresso de Aplicações de Vácuo na Ciência e na Industria, Itatiba SP, julho 2006.
- [2] O.R.Bagnato, J.E.Valente, F.R.Francisco, Efeito da Temperatura de Brasagem na Difusão de Ag em Cu. XV CBECIMAT, Natal, RN, outubro 2002.
- [3] Bagnato, O. R., Projeto sobre compósito Cu/Al₂O₃, Documentação Interna, LNLS, 2006.
- [4] Yamazaki, M. and Grant, N. J. Alumina Dispersion Strengthened Copper Nickel Alloys, Trans. Of the Metall. Society of AIME, vol. 233, Aug. 1965, 1573 –1580.
- [5] Chen, S. Cin, and B. A.Low Activation braze joint of dispersion strengthened copper. Journal of Nuclear Materials, 225 (1995) 132 – 136.

- [6] Viswanath Ravindranath, Sushil Sharma, Brian Rusthoven, APS, Argonne National Laboratory; Michael Gosz, Illinois Institute of Technology; Lin Zhang, Jean-Claude Biasci, ESRF, Thermal Fatigue Life Prediction of Glidcop[®] AL-15, *International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation*, may 24 26, Egret Himeji, Hyogo, Japan, 2006.
- [7] Toter, W., Sharma, S.; Analysis of Gold-Copper Braze Joints in Glidcop® for UHV Components at the Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA, 2000.
- [8] P. Marion, Y. Dabin, P. Theveneau, L. Zhang. New High Load Beamline Components for the ESRF, 2nd International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA, September 5-6, 2002.
- [9] Alessandro Berterelli, Oliver Aberle, Ralph Assman, Enrico Chiaveri, Tadeusz Kurtyka, Manfred Mayer, Roger Perret, Peter Sievers, THE MECHANICAL DESIGN FOR THE LHC COLLIMATORS, *Proceedings of EPAC 2004*, CERN, Geneva, Switzerland, 2004.