

NSCL/FRIB Power Supplies Overview, Integration, And Project Status

Kent Holland

Power Supplies Staff Engineer Control Account Manager Power Supplies Group Leader

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

NSCL History

TIMELINE OF NUCLEAR SCIENCE AT MSU

1958 MSU hires first accelerator expert	1978 NSAC recommends national user facility at MSU	2001 Research with fast rare isotope beams from CCF	2010 DOE approves CD-1 for FRIB					
1961 NSF approves sector focused K50 cyclotron 1965 Research with K50; single turn extraction	1982 Research with stable beams from K500 1989 Research with stable beams from K1200	2002 Infrastructure for SRF linac R&D 2005 Research with trapped rare isotope beams	2013 DOE approves CD-2/3A for FRIB 2014 Construction begins on FRIB					
197 NS K5 Cyc 1975 NSF approve superconduc cyclotron ma prototype	77 1996 F approves coup 00 cyclo clotron (CCF 1990 es Research with fast rare isotope beams from K1200	approves led btron facility) 2006 MSU funds ReA3 reaccelerator project	cts FRIB					

Facility for Rare Isotope Beams

Existing NSCL Facility

Facility for Rare Isotope Beams

Facility for Rare Isotope Beams A Future DOE-SC National User Facility

- Funded by DOE–SC Office of Nuclear Physics with contributions and cost share from Michigan State University
- Serving nearly 1,350 users
- Key feature is 400 kW beam power for all ions (e.g. 5x10^{13 238}U/s)
- Separation of isotopes in-flight provides
 - Fast development time for any isotope
 - All elements and short half-lives
 - Fast, stopped, and reaccelerated beams

Facility for Rare Isotope Beams A Future DOE-SC National User Facility

- Funded by DOE–SC Office of Nuclear Physics with contributions and cost share from Michigan State University
- Serving nearly 1,350 users
- Key feature is 400 kW beam power for all ions (e.g. 5x10^{13 238}U/s)
- Separation of isotopes N2 Va in-flight provides A1900 Re
 - Fast development time for any isotope
 - All elements and short half-lives
 - Fast, stopped, and reaccelerated beams

In addition to operating NSCL and building FRIB

there are always multiple projects in parallel. A

Present Stage of FRIB Beam Commissioning Front End, Cryomodule 1 – 3, Diagnostics Station

Front End

- Electron Cyclotron Resonance Ion Source
- Radiofrequency Quadrupole (RFQ) system
- Multi-harmonic bunchers
- Electrostatic quadrupoles and dipoles » 2-quadrant High Voltage (HV) PS
- Solenoid, Corrector, Dipole, and Quadrupole magnets » Room temperature magnet (RTM) PS, and RT dipole PS

Cryomodule

- Superconducting RF resonators
- Superconducting solenoid and corrector magnets
 » 4-quadrant SC magnet PS

Diagnostics station

 Energy, current, profile, position, and halo of the heavy ion beam

Front End

D-station 12 SC resonators in 3 cryomodules

FRIB Power Supplies (PS) Scope and Status

Connection issue found using thermal imager during final integrated testing

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University FRIB SC Magnet PS

Facility for Rare Isotope Beams

FRIB

Scope of HRS PS 96 SC magnet PS, 2 RT corrector PS

A new spectrometer for in-flight reactions providing sensitive tests of nuclear models

N2 Vault Cyclotron Stopper Reconfiguration

Facility for Rare Isotope Beams

SECAR Project Status

- Magnet Power Supply (PS) procurement working with supplier to resolve quality issues
 - 9 failures out of 30 PS! 5 Failure modes.
 - » (4) DC Under-voltage, supplier investigating root cause and corrective action
 - (2) blown power module fuses, (1) bad FET, (1) bad cap
 - (1) tripped at 40 A intermittent, no longer occurring
 - (1) trips at 100 A
 - » (2) AC Phase Detection loose connection resolved on all 30
 - » (1) Blank panel wrong standoffs from subcontractor resolved on all 30
 - » (1) No communication to controller resolved swapped front panel
 - » (1) Ripple at 90% current proposed to resolve by adding series resistor
- Power supplies installation and testing status \rightarrow
- Air temperature stability risk reduced by testing
 - PS current drifts with ambient air temperature change

Receiving door opened for 10 minutes on a ~15 F day 5.5°C air temperature S.S°C air temperature PS current ±9.4 ppm-fs Within ±17.5 ppr specification

- Example of fast temperature transient, PS temperature control loop cant keep up with fast change
- Example of slow temperature transient, PS temperature control loop keeps up with change

PS Safety Integrated into Designs

Front End Ion Source HV Platforms, exposed HV mitigated by

- High Voltage Lockout Tagout Procedure
- Mandatory Lock-Out Tag-Out (LOTO) to isolate energy source and verify isolation, ground bar and ground stick to ensure zero stored energy state
- Engineering controls Kirk keys, force the sequence to be performed in the proper order
- Defense in depth door switches, control box, and high voltage shorting relays automatically isolate energy source and ground the HV platform

Standard industrial hazards are known and mitigated

- Mitigate by following standard industrial practices such as LOTO, covers, etc.
- Magnet and PS connections will be covered, PS racks will be locked, signs posted, and a tool and LOTO procedures are required to unlock rack or remove covers
 - » Signage
 - Example magnet cover hazard signage
 - Example rack safety instruction signage (In addition to rack hazard signage)

HIGH CURRENT

SHOCK HAZARD VOLTAGE > 50V

Follow Safety Instructions on racks: FE_R1624:CAB_N0302

AUTHORIZED PERSONNEL ONLY

SAFETY INSTRUCTIONS

RACK 7 Following FRIB-T31209-PR-000448 The following breakers must be locked prior to opening rack:

Control Name	Breaker Panel	Breaker Number	Breaker V/A Rating	Equipment Owner
REA_BTS33/PSQ_D1388	REA3/L-Line EXT	35	480V/30A	Power Supply Group
REA_BTS33:PSQ_D1395	REA3/L-Line EXT	30	480V/30A	Power Supply Group
REA_BTS33/PSQ_D1411	REA3/L-Line EXT	31	480V/30A	Power Supply Group
REA BTS33/PSQ D1415	REA3/L-Line EXT	33	480V/30A	Power Supply Group

Kirk key

Facility for Rare Isotope Beams

Walkthrough of Interface Tracker

- The FRIB interface tracker spreadsheet tracks Interface Requirements Documents between systems
- Interface tracker
- ESD Interface tracker shown \rightarrow

Legend										
0	ICD not required									
Y	ICD required, not yet in DCC									
T	Link to ICD(s), but details T.B.D. in ICD									
V	Link to ICD(s)									
Acronyms										
ASD	Accelerator Systems Division									
CFD	Conventional Facilities Division									
ESD	Experimental Systems Division									

Avg.%			Cryogenic Systems	Target Area Utilities	arget Area Remote Handling	f Area Non-Conv. Utilities	. Beam Physics		agnets	anical Systems		
49 %avail			3.0	2.01	ц П	arge	Set.	tics	or M	lech	ation	
63	Cryogenic Systems	T.3.02		4.0	2.02	3 1	rag.	sou	arato	or M	gura	
29	Target Area Utilities	T.4.02.01	6	0	14.0	02.0	1 1	Diag	sepa	arat	ilino	s
33	Target Area Remote Handling	T.4.02.02	Б	0	0	T.4.(03.0	32	Pre	sep	Rec	plie
11	Target Area Non-Conv. Utilities	T.4.02.03	ΙÝ	Ŷ	Y	0	T.4.	03.0	g	Pre	00	Sup
100	Frag. Sep. Beam Physics	T.4.03.01	Ó	ò	Ò	õ	0	T.4.	03.0	04	A 19	Ner
18	Diagnostics	T.4.03.02	lo	Y	Υ	0	V	0	T.4.	03.	05	Po
64	Preseparator Magnets	T.4.03.03	<u>v</u>	Υ	V	Υ	V	0	0	Т.4	.03	90
27	Preseparator Mechanical Syst.	T.4.03.04	Υ	Υ	Υ	Y	0	Y	Υ	0	T.4	03
63	A1900 Reconfiguration	T.4.03.05	<u>v</u>	0	0	0	0	Y	0	0	0	T.
100	Power Supplies	T.4.03.06	<u>v</u>	V	0	0	0	0	<u>v</u>	V	<u>v</u>	0
89	Vacuum Systems	T.4.03.07	0	V	<u>v</u>	0	0	0	<u>v</u>	V	<u>v</u>	0
46	Low Level Controls	T.4.03.08	Υ	0	0	Υ	0	Υ	<u>v</u>	Υ	<u>v</u>	V
0	Target and Material Physics	T.4.03.09	0	0	0	0	0	0	0	Υ	0	0
100	Machine Protection System	T.4.06	lo	0	ο	<u>v</u>	0	<u>v</u>	ο	<u>v</u>	0	<u>v</u>
25	Global Timing System	T.3.04.02	0	0	0	0	0	Υ	0	0	0	0
20	Central Control Systems	T.3.13.01	0	0	0	Υ	0	Υ	Υ	0	0	<u>v</u>
43	Alignment Systems	T.3.13.03	lo	0	Υ	0	0	Υ	<u>v</u>	Υ	<u>v</u>	0
40	Personnel Protection Systems	T.3.13.04	<u>v</u>	0	Y	0	0	0	0	Y	0	<u>v</u>
	ASD Beam Delivery System	T.3.11	0	0	Y	0	0	0	0	<u>v</u>	0	0
	CFD	T.2	<u>v</u>	Υ	<u>v</u>	Υ	0	Υ	0	Υ	Υ	<u>v</u>
	NSCL	NA	0	0	0	0	0	0	0	0	Υ	0

Facility for Rare Isotope Beams

Magnet / Controls / PS Interface Defined

The magnet group provides

- · Terminal block to attach the DC leads
- Wiring between terminal block and magnet, strain relief for cables, safety covers, polarity labels and testing
- Controls monitors magnets via PLC
 - Example RT magnet water flow and coil temperature
- Controls provides a failsafe hardwired digital output
 - 0 V / disconnected = PS disabled
 - 24 V = PS enabled
- The table below lists the conditions which will cause interlock (immediate shutdown) of PS for typical self protecting SC magnets

Interlocked Device	Interlocked State	Interlocking Device Description	Signal/Limit	Delay
		Solenoid Power Supply Lead Voltage Drops		
Solenoid Power Supplies		Vertical Corrector Power Supply Lead Voltage Drops	>±100 mV	None
Vertical Corrector Power Supplies Horizontal Corrector Power Supplies	0 – "OFF"	Horizontal Corrector Power Supply Lead Voltage Drops		
		Helium header level	<25% full	Ramp
		Helium header pressure	>12 PSIG	None
		PS Rack row water flow	<17 GPM	None

Magnet Quench Protection Interfaces Defined

Quench detection

• Self protecting SC magnets require only slow dump resistors

» No special quench detection is required other than helium level, pressure, and lead drop interlocks

• For magnets requiring fast dump resistors

- » Lead drop
 - Lead voltage drop >60 mV, ramp the PS to 0 A
 - Lead voltage drop >100 mV, shut off the PS
- » Delta V quench detected by the voltage difference between coils
 - Controls provides the delta V module that monitors the voltage on both coils, if the voltage exceeds a threshold (50 mV) the PS is shut off and the dump switch is opened

Example Quench Protection Circuit

Reduces quench voltage by Forcing both coils to quench simultaneously

Specification:

R2 >=0.1 Ohm (per manufacturer)

Quench Protection Circuit [2]

Fast dump waveforms (switch off@500A):

Note: Simulations do not include increased magnet resistance during the forced quench, magnet current will drop very quickly after current flows in heater resistors

Heater power 6.25 W each

Facility for Rare Isotope Beams

Michigan State University

K. Holland, PC

Quench Protection Circuit [3]

Fast dump waveforms (switch off@350A): Heater power 1 W each

Quench Protection Circuit [4]

Slow dump waveforms (switch on@500A): Heater power 0 W each

Requirements Example: Magnets and Power Supplies Direct Correlation

Magnet Counts in Parameter List

Optical Elements

Date 4/2/2012

T.3		FE-RT	FE-SC	LS1-RT	FS1-RT	FS2-RT	FS2-SC	LS3-RT	BDS-RT	
		WBS								
Name*	Element description	T.3.05.02	T.3.05.03	T.3.06.07	T.3.07.02	T.3.09.02	T.3.09.03	T.3.10.02	T.3.11.02	TOTALS
D1	RT Dipole 5 Deg				8					8
D2	RT Dipole 45 Deg				4					4
D3	SC Dipole 45 Deg						4			4
D4	RT Dipole 17.5 Deg								4	4
D5	RT Dipole 90 Deg	4								4
D6	RT Dipole 45 Deg	1								1
Q1	RT Quad 25 cm 50 mm			12	28	14		28	12	94
Q2	RT Quad 26 cm 75 mm								2	2
Q3	RT Quad 40 cm 75 mm								1	1
QS1	RT Quad-Sextupole 25 cm 140 mm				4					4
QS2	RT Quad-Sextupole 50 cm 100 mm					2				2
QS3	RT Quad-Sextupole 40 cm 100 mm					4			4	8
C1	RT HE Corr-14				2	1				2
C2	RT HE Corr-5			6	13	7		14	6	46
C3	RT HE Corr-10					3			3	6
C4	FE LEBT Corrector	19								19
\$3	SC Solenoid FE MEBT		4							4
S4	RT Solenoid FE_LEBT	11								11
\$5	RT Solenoid FE_SCS									0
ED1	RT E-Dipole	2								2
EQ1	RT E-Quad	30								30
-	TOTALS	67	4	18	59	30	4	42	32	256

→ = logical link

PS Counts in Parameter List

Rack Layout & Power Consumption Sheets

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

K. Holland, POCPA 6 September, 2018, Slide 20

Design Integration with Civil Example: Power Supply (PS) Rack Layouts and Conduits

Design Integration Example: Conduits/Alternating Current (AC) Power Requirements

Facility for Rare Isotope Beams

Design Example: Magnets

We will look at the front end Low Energy Beam Transport (LEBT) solenoids in the accelerator tunnel
 4 of the 11 S4 solenoids are located prior to the Radio Frequency Quadrupole (RFQ)

Service Building Rack Row Naming

Facility for Rare Isotope Beams

Front End Rack Row Naming

Facility for Rare Isotope Beams

Service Building Conduit Bank Naming

Facility for Rare Isotope Beams

Front End Conduit Bank Naming

Facility for Rare Isotope Beams

Rack Row Layout

Facility for Rare Isotope Beams

Rack Layout

Facility for Rare Isotope Beams

Cable Trays for Rack Row FE-005, 3 Trays

Facility for Rare Isotope Beams

ASD Tunnel Utility Requirements

Loads and flows are from the Utility Spreadsheet and the Magnet Requirements document

WBS	Area	Magnet	Description	Equip ment code	Qty Each	Qty Notes Total	Magnet V require ment	Magnet I require ment	PS V	PS I	MAX PWR Each (W)	Expected PWR Each (W)	Effici ency	120 VA (W) w BW	C 208 VAC (W) w/ BW	208 3PH VAC (W) w/ BW	480 3P VAC (V w/ BV	YH Servic V) Buildin V LCW PV Out (W w/ BV	e Linac Ig Tunnel VR LCW PWF /) Out (W) V w/ BW	Service Building HVAC PWR Out (W) w/ BW	Linac Tunnel HVAC PWI Out (W) w/ BW	Total EQPT KW w/ BW
	-	-	•	•	-	-	-	-	-	-	-	•	-	*	•	•		-	•			•
T.3.05 Front End	Front End													Expected Capacity w/BW								
T.3.05.01 Diagnostics	Front End																					
T.3.05.02 RT Magnets	Front End	D5a	Dipoles (90 deg)	RTPS	2	2 No condui	55	305	60	333	19980	17699	0.87			40688	3	353	99	601	5	
	Front End	D5b	Dipoles (90 deg)	RTPS	1	1 No condui	36	200	40	250	10000	7680	0.87			8828	3	76	680	130	2	
	Front End	D5c	Dipoles (90 deg)	RTPS	1	1 No condui	36	200	40	250	10000	7680	0.87			8828	3	76	680	130	2	
	Front End	D6	Dipoles (90 deg)	RTPS	1	1	66	320	80	375	30000	22192	0.87			25508	2		2030	1 340	4 136	9
	Front End	S4a	Solenoid	RTPS	3	3 3 in servic	16.8	600	20	750	15000	11499	0.87			39653	3	344	198	717:	1	
	Front End	S4a	Solenoid	RTPS	2	2 3 in servic	16.8	600	20	750	15000	11499	0.87			26435	5		2005	3 <mark>6 418</mark>	4 <u>1</u> 74	
	Front End	S4b	Solenoid	RTPS	2	2 2 in servic	28	1000	40	1000	40000	30988	0.8			71236	i i	619	975	1303	2	
	Front End	S4b	Solenoid	RTPS	2	2 2 in servic	28	1000	40	1000	40000	30988	0.87			71236	5		5390	1 1137	3 475	
	Front End	EQ1a	Electrostatic quadrupo	RTPS	30	30 2 PS/EQ,	10000	0.012	10000	0.01	120	120	0.87	41	38					46		
	Front End	EQ1b	Electrostatic quadrupo	RTPS	30	30 2 PS/EQ,	10000	0.012	10000	0.01	120	120	0.87	41	38					46	8	
	Front End	ED1a	Electrostatic dipoles	RTPS	2	2 2 PS/ED, 2	20000	0.006	20000	0.01	120	120	0.87	2	76					3	1	
	Front End	ED1b	Electrostatic dipoles	RTPS	2	2 2 PS/ED, 2	20000	0.006	20000	0.01	120	120	0.87		76					3	1	
	Front End	C4	Corrector Dipole	RIPS	38	38 4 quad, 2	3	2	20	5	100	11	0.87	4								~· ·
	Front End		PLC & IOC	CI	12.15	12.15					80	65.6	0.		F	RIR I i	nac	Ontic	al Fle	ment	2	
T 2 05 02 CC M	Front End	62	101//1004 DC	CODO	-		<i>.</i>	100	10	105	4500	0.40	0.1				iiuv	opus			•	
1.3.05.03 SC Magnets	Front End	538	10V/100A PS	SCPS	4	4	6	100	10	125	1500	840										
	Front End	530	10V/40A PS	SCPS	8	8 2 PS/Solei	6	20	10	40	600	192		Optical Ele	ments							
	Front End		PLC & IOC	CI	8.05	8.05					80	65.6		Date 7/2	8/2011							
T 2 05 04 Courses	Front End			140	2	2 500 44					100000	147000										_
1.3.05.04 Sources	Front End		SC ECR Ion Source	MS	3	3 ECRS ON					180000	14/600		Т.3			FE-RT	FE-SC LS1-	RT FS1-RT FS	-RT FS2-SC	LS3-RT BDS-RT	
	Front End		Vacuum Inst	VA	60	60					40	20		26 1	T. Dipole		WBS	WBS WE	S WBS W	BS WBS	WBS WBS	142.82 = 3.6
	Front End		Diagnostics Inst	DI	6	5					300	246		D1 RT	Dipole 5 Deg		1.3.05.02	1.3.05.03 1.3.0	8	9.02 1.3.09.03	1.3.10.02 1.3.11.0	4 2 8 32
	Front End		ION Pumps	VA	/	/					80	24	(D2 RT	Dipole 45 Deg				4			9.75 4 10.
	Front End		Cryogenics CI	CI	2	2					120	98.4	(D3 SC	Dipole 45 Deg					4		-× 4 0.0
	Front End			CI	2	2					2400	131.2	— (D4 RT	Dipole 17.5 Deg	3						4 3.7524 15.1
	Front End		Turba Dump		17	17					2400	1968	`	D5 RT	Dipole 90 Deg		4					1, 5× 4 7.
	Front End		Turbo Pump (Largo)	VA	1/	1					200	40			Quad 25 cm 50	mm			8 24	12	28 1	0 4.5×82 36
	Front End		Fact Value	VA	1	1					200	80			Quad 40 cm 75	mm			1	1		1 4.4 5 1 4.7
	Front End		Fast valve	VA	1	1					100	62		OS1 RT	Quad-Sextupole	a 25 cm 140 mm	-		4			12-x4 48
	Front End													QS2 RT	Quad-Sextupole	e 50 cm 100 mm		1		. 2		8.572 17
T 2 OF OF DE Systems	Front End		BEO.	DE	1	1					0	0		QS3 RT	Quad-Sextupole	e 40 cm 100 mm	- C.			4		4 10 % 8 80
1.5.05.05 KF Systems	Front End			KF	1	1 Includes					250000	287000		C1 R1	HE Corr-14	1			2			7.5×2 15
	Front End		KFU Amplifier	KF	1	1 Includes					320000	287000		C2 RT	HE Corr-5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 13	7	14	6 415 A 44 191
	Front End		100W Bunchers	DE	2	2					20000	12500		G RI	RECOIL-IU	FBT				3		4 4 37
	Front End			CI	1.97	1.97					20000	12300	r	35 RT	Solenoid FE LE	BT	7					11 16 65
T	Front End		FLC & IOC	CI	1.87	1.07					80	05.0	6	\$5 RT	Solenoid FE S	CS	4					11× 4 44
Total (Amna CDM Tar														ED1 RT	E-Dipole		2					2
Total (Amps, GPM, Ton	5)													EQ1 DT	E-Quad		32	1				32
														1000			1000	4	12		42 5	O BOOK STORE

11 gallons per minute (gpm) each magnet

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University S. Chouhan, 18 Oct 2011, Magnets Peer Review - 06, Slide

FRIB

ASD Magnet Water Needs Met by CF Design

- All CF scope verified to meet requirements during design reviews
 - Racks, AC power, cooling water, HVAC, Cable tray, conduits

Facility for Rare Isotope Bea U.S. Department of Energy Office of Science Michigan State University

HVAC Requirements (Tons) by Rack Row

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ASD Tunnel HVAC Needs Met by CF Design

Load to HVAC is picked up by Fan Coil Units (FCU) in the area

Facility for Rare Isotope Beams

ASD Service Building HVAC Needs Met by CF Design (Ducting Detail)

M7.2 Air Handling Unit

(2) <u>Europ</u>

Facility for Rare Isotope Beams

Questions?

holland@frib.msu.edu

Thank you POCPA community for you expert advice on many questions over the last several years!!!

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Backup Slides

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

K. Holland, POCPA 6 September, 2018, Slide 37

Quench Detection Fault Analysis Summary

- Conclusions:
 - R1 short results in a very slow dump.
 - Wire from R2 to R3 should be rated for full current.
 - Heater resistor should be rated for the full stored energy.
 - R2 short will disable the heater system.

Quench Detection Component Selection [1]

Transient Voltage Suppressors (TVS) diode

- Zener diode which is typically designed to fail in short
- Large peak pulse power capability
- Variety choices of break down voltage

PRIMARY CHARACTERISTICS								
V _{WM}	8.5 V to 188 V							
V _{BR}	9.4 V to 231 V							
P _{PPM}	5000 W							
PD	8.0 W							
I _{FSM}	500 A							
T _J max.	175 °C							
Polarity	Uni-directional							
Package	P600							

Application Note: Device must be used with two units in parallel, opposite in polarity as shown in circuit for AC signal line protection.

Fig. 4 - AC Line Protection Application

Quench Detection Component Selection [2]

TVS diode pulse power handling

Our case: Ippm=0.5 A, Vd=25 V Peak power=12.5 W td=5 s

Limit: Peak power=190 W td=4 s

Quench Detection Component Selection [3]

0.1 Ohm dump resistor

(manufacturer cannot guarantee 10% tolerance for resistor below 0.1 Ohm)

Michigan State University

Quench Detection Component Selection [4]

0.1 Ohm dump resistor

✓ Good

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Scie Michigan State University

K. Holland, POCPA 6 September, 2018, Slide 42