Magnet power supply system for J-PARC main ring upgrade

Yuichi Morita J-PARC/KEK

Contents

- Introduction
- Present PS system
- > PS system after upgrade
- Present status

Contents

- Introduction
- Present PS system
- > PS system after upgrade
- Present status

J-PARC Main Ring (MR)

Specifications

Proton synchrotron 2 experimental facilities (Neutrino, Hadron) Acceleration: 3 GeV to 30 GeV, 3 GeV to 8 GeV Beam power: 470 kW for Neutrino facility (present)

Beam upgrade

In order to achieve the MR beam power of > 750 kW,

the scheme of Increasing Repetition Rate is adopted.

Required Performance of PS for MR Main Magnets

	Cycle [sec]	Output Current [A]	Output Voltage [kV]	Output Power [MVA]
Present PS	2.48	1600	3	5
New PS	1.3	1600	~6	~10

	-	Power Supply	Number of magnets	Total Inductance at 30 GeV [H]	Flat Base Current [A]	Flat Top Current [A]	Output Voltage [kV] 2.5 sec / 1 sec
Large _	B Magnets	BM1~6	16	1.47	190	1570	2.6 / 5.8
		QFN	48	2.93	86	710	2.7 / 5.6
	Q Magnets	QDN	48	3.46	86	710	3.1 / 6.7
P3	at Arc Sections	QFX	48	2.39	88	730	2.6/4.8
		QDX	27	1.75	86	710	1.6/3.4
		QFR	9	0.57	77	640	0.5 / 1.3
		QDR	6	0.44	75	620	0.4 / 0.7
	Q Magnets	QFP	6	0.20	77	640	0.3 / 0.4
	at Linear Section	ns QFS	6	0.30	81	670	0.3 / 0.5
Small		QDS	6	0.35	110	890	0.5 / 0.9
PS		QFT	6	0.32	95	780	0.4 / 0.7
		QDT	6	0.37	90	750	0.4 / 0.7
		SFA	24	0.42	23	200	0.3 / 0.4
	SiMagnets	SDA	24	0.41	19	160	0.2 / 0.3
		SDB	24	0.41	19	160	0.2 / 0.3
Pov	wer variation at ele	ctrical syst	tem ———				
30 20		present upgrade with CBs	<u>2.48 sec</u> ~60	<u>c cycle</u> MVA (peak to p	beak)		
M 10 10 10 0 -10 -20			Forbidden by electrical power company 1.3 sec cycle Image: Cycle w/o Capacitor Bank: > 100 MVA				
-30 0.0	0.5 1.0 1.5 Time [s]	2.0 2.5	w/ Ca	apacitor Bank: I	ower than	the pres	ent value

List of MR Main Magnets and PSs

Contents

- Introduction
- Present PS system
- > PS system after upgrade
- Present status

Schematic circuit of PS

Electrical connection of PS system

D1

D2

D3

Electrical connection of PS system

D1

D2

D3

Connection for control

Connection for control

Connection for alarms

Connection for alarms

Example of magnet distribution (QFN, 48 magnets)

Contents

- Introduction
- Present PS system
- PS system after upgrade
- Present status

Load

New buildings for upgrade

D3

D3

Three new buildings were constructed. The constructions were completed last year.

D5

1 mars

New buildings for upgrade

D3

D3

D4

Three new buildings were constructed. The constructions were completed last year.

D5

I man

Electrical connection of PS system

Electrical connection of PS system

Connection for control

Connection for control

Connections for control of new BM PSs are isolated from other PSs. ⇒ Make system simple
No alarm monitor panel exists in D4. The terminal directly contacts the new BM PSs.

Connection for alarms

Connection for alarms

- Alarm information of magnets are shared among new BM PSs and the alarm monitor panels.

New buildings for upgrade

D5

1 ince

D3

D3

Three new buildings were constructed. The constructions were completed last year.

Electrical connection of PS system

Electrical connection of PS system

Connection for control

Connections for control of new BM PSs are isolated from other PSs. ⇒ Make system simple
No alarm monitor panel exists in D5. The terminal directly contacts the new BM PSs.

Connection for alarms

Connection for alarms

Connections for alarms of new BM PSs are isolated from other PSs. ⇒Make system simple
Alarm information of magnets are shared among new BM PSs and the alarm monitor panels.

Connection for alarms

Contents

- Introduction
- Present PS system
- > PS system after upgrade
- Present status

Installed

Partially installed

Presen ⁻	t status

	Family	status
BM1	Converter	
	Capacitor Bank	
	Transformer	
	Converter	
BM2	Capacitor Bank	
	Transformer	
BM3	Converter	
	Capacitor Bank	
	Transformer	
BM4	Converter	
	Capacitor Bank	
	Transformer	
	Converter	
BM5	Capacitor Bank	
	Transformer	
	Converter	
BM6	Capacitor Bank	
	Transformer	
QFN	Converter	
	Capacitor Bank	
	Transformer	
	Converter	
QDN	Capacitor Bank	
	Transformer	

	Family	status	Γ
QFX	Converter		
	Transformer		
QDX	Converter		
	Transformer		ר
OFP	Converter		
QFK	Transformer		
QDR	Converter		-
	Transformer		
QFP	Converter		
	Transformer		
055	Converter		
QF3	Transformer		
0.05	Converter		
QD3	Transformer		
OFT	Converter		
QFT	Transformer		
QDT	Converter		
	Transformer		
65.4	Converter		+
JFA	Transformer		٦
SDA	Converter		
SDA	Transformer		┢
SUB	Converter		
SDR	Transformer		

Components that will be installed next January.

- Two sets of converters
- Three containers for CB

The new QFR PS has been used for the beam operation since 2016.

~35% of the installation will be finished next January.

No technical issue is remained. The production of rest of PSs will start as soon as the budget is approved.

- Product was delivered in 2014.

Present systems are sufficient.

The end of slides

Management for key of container

The conditions for the permission of the use of the key. The discharger "CLOSE" AND **BM PS** • All of 6 banks complete the discharges (lower than 10 V). AND Controller • 5 minutes after the discharger closed. PLC PLC monitors the conditions. E.M. lock Electromagnetic lock Permission is necessary The key is common for the three containers. to pull out the metal plate. (It is not common among the different families.) Metal plate padlock padlock

padlock PLC PLC PLC Monitoring voltage Monitoring voltage Monitoring voltage Bank 4 Q Bank 2 ŝ Ξ ഹ Bank Bank Bank Bank container container container

Permission is necessary to pull out the metal plate. EM lock $\underbrace{\mathsf{F}(M)}_{\mathsf{M}} = \underbrace{\mathsf{F}(M)}_{\mathsf{M}} = \underbrace{\mathsf$

All PLCs are connected with optical links each other. All voltages of 6 banks are included the management sequence.