

APS-U Magnet Power Supply Systems Status POCPA 2018 – Brazil

Fernando Rafael

APU Power Supplies CAM Argonne National Laboratory

Advanced Photon Source Upgrade (APS-U) Project

September 24 - 26, 2018

Outline

- APU APS Upgrade Project
- Scope of this system and requirements
- External interfaces and integration
- Systems design maturity (status)
- Cost and schedule
- ES&H
- Summary

Why, What and How.

International High Energy DLSR Development

ESRE

APS Upgrade plans to enable the United States to maintain a world leadership position in storage ring-based x-ray sources

 $\lambda = 1 \text{\AA} \implies \epsilon_{\text{diff}} = 8 \text{ pm-rad}$

 $\frac{\lambda}{4\pi}$

MAX-IV (Sweden) Inauguration June 2016; in operation

2016

HEPS (China) Greenfield accelerator facility to be built near Beijing; planned completion ~2025

2020

ESRF (France)

beamlines by 2022

SPring-8 (Japan) Upgrading in 2027 timeframe 2027 2025 2023 2022 second phase of upgrade incorporates **APS-U** MBA lattice; plans to resume operation Resume in 2020, complete 4 state-of-the-art operation in 2023

Ing-8

2018

APS-U Parameters

APS-U Preliminary Design Report, September 2017

Vertical Divergence (rms)

3.5

4.1

1.5

 μ rad

600

600

Magnet Power Supplies Scope of the Work

Magnet Power Supply Systems

L-Bend Dipole Magnet Power Supply System

Unipolar Power Supply System

DC Trim Bipolar Power Supply System

Fast Corrector Bipolar Power Supply System

Power Supply Controllers

Magnet TC Monitoring System

Power Supply Pre-Installation Testing

- SR consists of 40 Sectors. Each with 33 arc magnets; 27.6 meters / sector
- Each sector is hybrid 7BA¹ (with longitudinal bends and reverse bends²

¹ Raimondi et al., ESRF ² Streun et al., PSI Total cost for Magnet Power Supply Systems is ~ \$30 MI

Magnet Power Supplies Specification

Parameters*	Q1-8	Q-Bend	L-Bend	Sextupoles	Bi-Trim	Bi-Fast	Unit
Current (range)	135 - 250	230 - 254	245 - 441	62 - 88	+/-15	+/-15	А
Initial Accuracy	100	100	100	100	100	100	ppm
Repeatability	100	100	100	100	100	100	ppm
Settablility (ENOB)	18	18	18	18	16	16	bits
Reproducibility	10	10	10	10	100	100	ppm
Current Stability	10	10	10	10	100	100	ppm
Quantity	640	120	2	240	921	322	2245

- From FReD (Function Requirements Documents)
- Covered by the Engineering Specification Document ESD

Magnet Power Supply Systems Interfaces - ICD

Magnet Interfaces

- Power cables
- Thermal switches and thermocouples

Utility Interfaces

- 480VAC and 120VAC existing
- Cooling water system existing
- Building temperature stability 1°C stability

Controls Interface

- EPICS interface for general control and monitoring
- Synchronized sampling and data read back
- Time-stamped bulk data read back for power supply waveform capture
- Fast Orbit Feedback (FOFB) System Interface for bipolar PS

Safety and Machine Protection Interfaces

- Beam energy interlocks
- Tunnel access interlocks
- Power supply cooling water interlocks
- Power supply emergency turn-off

Interface with Removal and Installation

- Power supply test area
- Power supply removal and installation

Magnet Power Supply System Value Engineering/Alternatives

- Re-using the existing infrastructure
 - Raw Power Supplies Total of 80
 - Converter Cabinets Total of 200
 - Cooling LCW
 - AC Distribution (M1 M2)
 - Stripline Bus (M1)
- Common Components/Design
 - M1 and M2 Same model
 - Three (3) families of Unipolar Power Supplies One design just different ratings
 - Bipolar Trim and Fast correctors power supplies One design with different frequency responses

T1	40	V
Config: 72/62/40	2600	А
T2	62	V
Config: 62/40	1200	А
Т3	40	V
Config: 40/20	2100	А
T4	40	V
Config: 40/20	1900	А

—

Unipolar, Bipolar and Controllers Power Supplies System

Overview

POCPA - 6 Brazil - September 24-26, 2018

Unipolar Power Supply System

Unipolar Power Supply System – LLP

- RFQ sent on 06/20/2018
- Received 6 bids
- Phase I Prototyping vendors awarded on 09/11/2018

Open Frame Top View

1,000 - Units

- 240 DCU 100 15 Vdc 100 A
- 320 DCU 200 15 Vdc 200 A
- 440 DCU 300 45 Vdc 300 A

Trim/Fast Bipolar Power Supply System

Frequency response with 8-pole magnet,

- Trim/Fast Bipolar Power Supply System
 - Final Design Nearly complete

- 40VDC input
- ±15A output

Argonne

NATIONAL LABORATORY

- 10 kHz* bandwidth for up to 1% signal
- Differential analog reference input
- DCCT for current sensing
- 250 kHz PWM with interleaving

-6.0

-9.0

-12.0 -15.0

-50

୍ଲି ଅ -100

POCPA - 6 Brazil - September 24-26, 2018

-1.88dB

-40.6°

100,000

L-Bend Dipole Power Supply System **Design & Design Maturity**

L-Bend Dipole Power Supply System

- **Power Supplies**
 - 500 A, 584 kW
 - Commercial solution (ex: Danfisik 8500 series)
 - Same model for both M1 and M2 magnets
- Stripline Bus
 - M1 Existing Documentation traced
 - M2 (new)
- AC power Distribution

Danfysik System 8500, 10 ppm stability

DC Output ratings

Power range	: 80-1,500 kW
Standard current range	: 300-2,000 A
Optional current voltage	: 300-10,000 /
/oltage range	: 0-2,000 V

Power Supply Controllers System Overview

Power Supplies Controllers

- Communication Architecture
 Three links to accommodate different
 PS control/monitoring requirements.
 - Giga Bit Ethernet EPICS
 - SFP 1 Gb/s FOFB
 - SFP 1 Gb/s Raw Data
- External Digital interface
 - SPI 18 bit ADC @ 22.6 kHz BW
 - Bipolar PS Analog
 - Unipolar Ethernet/UDP
- * External Monitoring link not shown

Power Supply Controllers System Bipolar

Bipolar Power Supply Controller System Design

Bipolar Power Supply System

- 200 Bipolar power supply controllers
- 22.6 kHz Sample Rate

Bipolar Power External Current Monitoring System Design

- Bipolar Power External Current Monitoring System
 - 200 units 1600 channels
 - Preliminary Design Completed

Power Supply Controllers System Unipolar

Unipolar Power Supply Controller System Design

Unipolar Power Supply Controller System

- 200 Unipolar power supply controllers
- Preliminary Design

Unipolar PS External Current Monitoring System

Preliminary Design

Power Converter Cabinet

High-level Schedule

Magnet Power Supply System ES&H

- All electrical equipment comply with Argonne "Electrical Safety Manual"
 - Part I: Electrical Hazards
 - Part II: Electrical Safe Work Practices
 - Appendix D: References for QEW Skill of the Worker Work
- All electrical equipment either NRTL or DEEI.
 - Field Evaluation & Approval Of Unlisted Electrical Equipment
- All electrical worker QEW-II trained

Summary

The Magnet Power Supply System has a large number of components:

- Two large AC/DC power supplies for L-bend (M1/M2) dipole magnet strings
- 1000 unipolar 10-ppm stability-class commercial DC/DC power supplies LLP
- 921 slow +/-15A bipolar power supplies
- 322 fast +/-15A bipolar power supplies
- 200 unipolar power supply controllers Design ongoing
- 200 bipolar power supply controllers Preliminary Design Complete
- Magnet TC Monitoring System Design ongoing
- CD-2 October 10 -12, 2018 (Performance Baseline)
- CD-3 Spring 2019 (Construction Begins)

Backup Slides

Magnet Power Supply Systems Total Cost Summary

WBS	WBS Description	FY16\$ Direct	Escalation	Overhead	Total
U2.02.01.02.06	Power Supply R&D	1,666,847	5,481	180,455	2,063,724
U2.03.03.03	Magnet Power Supply Systems	26,226,523	3,455,375	1,254,970	31,421,544
Grand Total		27,893,370	3,460,857	1,435,425	33,485,268

M1 and M2 AC Distribution Design & Design Maturity

02.03.03.03.01 – L-Bend Dipole Power Supply System

480V SWGR SG-R2

Bipolar Power External Current Monitoring System Design & Design Maturity

• 02.03.03.03.05 – Power Controllers

03.03.03 - Magnet Power Supplies Organization

* Not from PSG

Basis of Estimate Category Summary

ANL Director's CD-2 Review of the APS-U Project - August 21-23, 2018