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Concept of Inductance: amplitude domain

𝐿𝑎 =
𝜙

𝑖
: apparent or secant inductance

𝐿𝑑 =
d𝜙

d𝑖
=

𝑣−𝑅𝑖

ൗd𝑖
𝑑𝑡

: differential or incremental inductance

𝐿𝐸 =
2𝑊

𝑖2
: energy-equivalent inductance 

𝑊 being the energy stored in the magnet

 Several definitions exist for the inductance (of a magnet) [1]

 with respect to the current

 only in ideal case inductance is a constant and the three 

definitions coincide

𝐿𝑑 = 𝐿𝑎 + 𝑖
d𝐿𝑎

d𝑖
Differential inductance as a function of current and apparent inductance
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Concept of Inductance: frequency domain

 Inductance will be now assumed constant with respect to current 

 Only “small variations” in frequency domain will be considered

 How current perturbations (that can be somehow controlled) 

affect field variations (in turn affecting the beam) ? 

 Let us consider the relative variations of 𝜙 , 𝑣 and 𝑖 : 

∆𝜙

𝜙
=

𝜙(𝑓)

𝜙𝑛𝑜𝑚
: relative variation of "magnet” magnetic flux

∆𝑖

𝑖
=

𝑖(𝑓)

𝑖𝑛𝑜𝑚
: relative variation of converter current

∆𝑣

𝑣
=

𝑣(𝑓)

𝑣𝑛𝑜𝑚
: relative variation of converter voltage
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 Let us consider now different sensitivity functions: 

𝛿𝜙

𝛿𝑖
= ൘

∆𝜙

𝜙
∆𝑖

𝑖

: Sensitivity of (relative) flux variation to (relative) current variation

𝛿𝑖

𝛿𝑣
= ൘

∆𝑖

𝑖
∆𝑣

𝑣

: Sensitivity of (relative) current variation to (relative) voltage variation

𝛿𝜙

𝛿𝑣
= ൘

∆𝜙

𝜙
∆𝑣

𝑣

: Sensitivity of (relative) flux variation to (relative) voltage variation

𝛿𝜙

𝛿𝑖
: ppm of flux variation per ppm of current variation

𝛿𝑖

𝛿𝑣
: ppm of current variation per ppm of voltage variation

𝛿𝜙

𝛿𝑣
: ppm of flux variation per ppm of voltage variation

Or analogously in terms of ppm: 

Concept of Inductance: frequency domain 
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 Let us assume now the following identity: 

𝜙 𝑓 = 𝐿 𝑓 𝑖(𝑓)

 it is not exactly what physically happens, but rather what is 

“observed” at the circuit terminals

𝜙𝑛𝑜𝑚 = 𝐿 0 𝐼𝑛𝑜𝑚 = 𝐿𝐷𝐶𝐼𝑛𝑜𝑚

 In terms of flux then: 

∆𝜙

𝜙
=
𝐿 𝑓 𝑖(𝑓)

𝐿𝐷𝐶𝐼𝑛𝑜𝑚
=
𝐿 𝑓

𝐿𝐷𝐶

𝑖(𝑓)

𝐼𝑛𝑜𝑚
=
𝐿 𝑓

𝐿𝐷𝐶

∆𝑖

𝑖

𝛿𝜙

𝛿𝑖
= ൙

∆𝜙
𝜙

∆𝑖
𝑖

=
𝐿 𝑓

𝐿𝐷𝐶

The sensitivity of flux with respect to

current depends on how inductance

changes with frequency

Concept of Inductance: frequency domain 
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Inductance within a control loop

 It is always assumed that the greater the inductance the better 

in terms of noise on the current and hence on the B field 

 But is it really so?
 let us consider the open loop case first:

𝑣𝑜𝑙 𝑓 = 𝑅 + 𝑗2𝜋𝑓𝐿 𝑓 𝑖𝑜𝑙(𝑓)

𝛿𝑖

𝛿𝑣
𝑜𝑙

=
1

1 + 𝑗2𝜋𝑓
𝐿 𝑓
𝑅

= ൙

∆𝑖
𝑖 𝑜𝑙

∆𝑣
𝑣 𝑜𝑙

=
𝑖𝑜𝑙(𝑓)

𝐼𝑛𝑜𝑚

𝑅𝐼𝑛𝑜𝑚
𝑅 + 𝑗2𝜋𝑓𝐿 𝑓 𝑖𝑜𝑙(𝑓)

 the greater 𝐿(𝑓) the greater the “equivalent” time constant, so the 

greater 𝐿 the better in terms of impact of voltage ripple 

𝛿𝜙

𝛿𝑣
𝑜𝑙

=
𝛿𝜙

𝛿𝑖

𝛿𝑖

𝛿𝑣
𝑜𝑙

=
𝐿(𝑓)

𝐿𝐷𝐶

1

1 + 𝑗2𝜋𝑓
𝐿 𝑓
𝑅
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Inductance in closed loop

What happens in closed loop?
 It depends strongly on the controller! 

 However some general considerations can be highlighted by 

means  of an ideal “PI like” controller

𝐶 𝑠 =
2𝜋𝐵𝑊𝑐𝑙

𝑠
𝑅 + 𝑠𝐿 𝑠 =

𝑅 + 𝑠𝐿 𝑠

𝑠𝜏𝑐𝑙
𝐺(𝑠) =

1

𝑅 + 𝑠𝐿(𝑠)

∆𝐼

∆𝑉
𝑐𝑙

=
1

𝑅

𝑗2𝜋𝑓𝜏𝑐𝑙
1 + 𝑗2𝜋𝑓𝜏𝑀 1 + 𝑗2𝜋𝑓𝜏𝑐𝑙

= ൙

1
𝑅 + 𝑗2𝜋𝑓𝐿(𝑓)

1 +
𝐶(𝑗2𝜋𝑓)

𝑅 + 𝑗2𝜋𝑓𝐿(𝑓)

𝜏𝑐𝑙 =
1

2𝜋𝐵𝑊𝑐𝑙
𝜏𝑀 =

𝐿(𝑓)

𝑅
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Inductance in closed loop

 Now sensitivity of current to voltage disturbances is a band-pass:

 with mid-frequency gain
𝜏𝑐𝑙

𝜏𝑀
=

𝐵𝑊𝑜𝑙

𝐵𝑊𝑐𝑙

 normalized by the circuit resistance (ppm of voltage to ppm of current)

𝛿𝑖

𝛿𝑣
𝑐𝑙

=
1

2𝜋𝐵𝑊𝑐𝑙

𝑗2𝜋𝑓

1 + 𝑗2𝜋𝑓𝜏𝑀 1 + 𝑗2𝜋𝑓𝜏𝑐𝑙

 Analogously for the voltage disturbances to flux:

𝛿𝜙

𝛿𝑣
𝑐𝑙

=
𝛿𝜙

𝛿𝑖

𝛿𝑖

𝛿𝑣
𝑐𝑙

=
𝐿 𝑓

𝐿𝐷𝐶

𝑗2𝜋𝑓𝜏𝑐𝑙
1 + 𝑗2𝜋𝑓𝜏𝑀 1 + 𝑗2𝜋𝑓𝜏𝑐𝑙
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𝛿𝑖

𝛿𝑣
𝑐𝑙

𝛿𝑖

𝛿𝑣
𝑜𝑙

20𝑙𝑜𝑔10
1

100

Inductance in closed loop
 Assuming a reasonable ratio

𝜏𝑐𝑙

𝜏𝑀
𝐷𝐶 =

𝐵𝑊𝑜𝑙

𝐵𝑊𝑐𝑙
=

1

100
and 𝐿 𝑓 = 𝐿𝐷𝐶 :

In low and mid frequency ranges the “original” magnet inductance is 

irrelevant, only the control-loop parameters matter. 

For 𝑓 > 𝐵𝑊𝑐𝑙 however the attenuation is given by the “original” magnet

inductance, so it would seem that the higher the inductance the better! 

But in high frequency the “inductance” might drop with frequency!
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How inductance variation with frequency is observed

𝑍 𝑓 = 𝑅 + 𝑗2𝜋𝑓𝐿

 Assuming ideal RL-series model for the magnet’s impedance:

 𝐿 can be estimated from measured 𝑍 as: ෠𝐿 =
𝑖𝑚𝑎𝑔(𝑍)

2𝜋𝑓
=

𝑍−𝑅

𝑗2𝜋𝑓

 𝑍 − 𝑅 is never purely imaginary for real inductors (*)

 it is not correct to consider a “frequency varying inductance”, but:

 ෠𝐿 decreases with frequency

 it is therefore reasonable to deduce  
𝐿 𝑓

𝐿𝐷𝐶
≤ 1, hence:  

𝛿𝜙

𝛿𝑖
≤ 1

 the ppm of flux are always less than the ppm of current !

(*) Kramers-Kronig relationships between real and imaginary parts due to causality
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So what is really going on?

 The PC powers not only the magnet but also losses:

 well known eddy currents

 they affect differently resistive and superconducting magnets

 focus here will be only on superconducting magnets

 magnets themselves have losses

 cold beam screens play a dominant role

 only brief references for normal conducting (lack of time…)
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A SC example: LHC Magnet at 1.9 K

No DC bias Small signal excitation

Courtesy TE-MSC C. Giloux - 2009 

Aperture without Beam Screen

Aperture with Beam Screen
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b
a

b

Ideal 𝑛-pole with inner conductive shell (infinitely thin)

𝐴𝑧 𝑟, 𝜃, 𝑓 = 𝜇0
𝑏

2𝑛

𝑟

𝑏

𝑛

𝐽𝑧 𝑏, 𝜃, 𝑓

𝐽𝑧 𝑏, 𝜃, 𝑓 =
𝑁𝑐𝐼0

4𝑏
cos(𝑛𝜃) sin(2π𝑓𝑡)

𝐽𝑧
′ 𝑎, 𝜃, 𝑓 = 𝜎𝑠𝐸𝑧 = −𝑗2π𝑓𝜎𝑠 𝐴𝑧 𝑎, 𝜃, 𝑓 + 𝐴𝑧

′ 𝑎, 𝜃, 𝑓

𝐴𝑧
𝑡𝑜𝑡 𝑟, 𝜃, 𝑓 = 𝐴𝑧 𝑟, 𝜃, 𝑓 + 𝐴𝑧

′ 𝑟, 𝜃, 𝑓 =
𝐴𝑧 𝑟, 𝜃, 𝑓

1 + 𝑗2π𝑓𝜏𝑛

𝜏𝑛 = 𝜎𝑠𝜇0
𝑎

2𝑛
𝑓𝑛 =

1

2𝜋𝜏𝑛
=

2𝑛

𝜇02𝜋𝑎 𝜎𝑠

𝜎𝑠

Notation and calculations taken directly from [2] – rewritten to highlight where the pole comes from 

Cut-off frequency increases with the order of the magnet: so for a given beam 

screen the shielding for a dipole is twice more effective that for a quadrupole

and so on…

Induced currents appear in the shell:

Contributing to the total vector potential as:
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Notation and calculations taken directly from [2] – rewritten to highlight the “equivalent inductance” 

Bex t 

a
b

Bint 

𝑘 =
𝑎

𝑏

2𝑛

𝑅 =
𝑘𝐿

𝜏𝑛

𝑍 𝑠 = 𝑅𝑐 + 𝑠𝐿
1 + 𝑠𝜏𝑛 1 − 𝑘

1 + 𝑠𝜏𝑛
𝐿𝑒𝑞 𝑠 = 𝐿

1 + 𝑠𝜏𝑛 1 − 𝑘

1 + 𝑠𝜏𝑛

𝐿𝑒𝑞 0 = 𝐿

𝐿𝑒𝑞 ∞ = 𝐿(1 − k)

B𝑖𝑛𝑡
B𝑒𝑥𝑡

=
1

1 + 𝑠𝜏𝑛

Rc
(1-k)L

PC

kLR 

1

2𝜋𝜏𝑛

1

2𝜋(1 − 𝑘)𝜏𝑛

𝐿

𝐿(1 − k)

Ideal 𝑛-pole with inner conductive shell (infinitely thin)
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b
a

b

Ideal 𝑛-pole with thin inner conductive shell

𝐴𝑧 𝑟, 𝜃, 𝑓 = 𝜇0
𝑏

2𝑛

𝑟

𝑏

𝑛

𝐽𝑧 𝑏, 𝜃, 𝑓

𝐽𝑧 𝑏, 𝜃, 𝑓 =
𝑁𝑐𝐼0

4𝑏
cos(𝑛𝜃) sin(2π𝑓𝑡)

𝐽𝑧
′ 𝑎, 𝜃, 𝑓 = 𝜎𝑠𝐸𝑧 = −𝑗2π𝑓𝜎𝑠 𝐴𝑧 𝑎, 𝜃, 𝑓 + 𝐴𝑧

′ 𝑎, 𝜃, 𝑓

𝐴𝑧
𝑡𝑜𝑡 𝑟, 𝜃, 𝑓 = 𝐴𝑧 𝑟, 𝜃, 𝑓 +𝐴𝑧

′ 𝑟, 𝜃, 𝑓 ≅
𝐴𝑧 𝑟,𝜃,𝑓

1+𝑗2π𝑓𝜏𝑛

𝜏𝑛 = 𝜎𝑠𝜇0
𝑎

2𝑛
𝑓𝑛 =

1

2𝜋𝜏𝑛
=

2𝑛

𝜇02𝜋𝑎 𝜎𝑠

𝜎𝑠

d𝑎

𝑓𝑛 =
2𝑛

𝜇0 2𝜋𝑎d𝑎
𝐴

𝜎
=

2𝑛

𝜇0𝐴𝜎
𝜎𝑠= 𝜎d𝑎

At first approximation the cut-off is directly proportional to 𝑛 and inversely proportional to 

the product 𝐴𝜎 of the cross-section area of the beam screen and its conductivity.

For thick and/or non-cylindrical BS the magnetic TF 𝐻(𝑠) is not a simple pole! 
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𝑖

𝑣
=

1

𝑅 + 𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)
=
1

𝑅

1

1 + 𝑠 𝜏 1 − 𝑘 + 𝑘 𝐻(𝑠)

𝑖𝐵𝑖𝑛𝑡
𝑣

=
𝑖𝐵𝑖𝑛𝑡
𝑣𝑖𝑛𝑡

𝑣𝑖𝑛𝑡
𝑣𝑚𝑎𝑔𝑛𝑒𝑡

𝑣𝑚𝑎𝑔𝑛𝑒𝑡

𝑣

𝑖𝐵𝑖𝑛𝑡
𝑣

=
1

𝑠 𝑘 𝐿

𝑠 𝑘 𝐿 𝐻(𝑠)

𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)

𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)

𝑅 + 𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)
=
1

𝑅

𝐻(𝑠)

1 + 𝑠 𝜏 1 − 𝑘 + 𝑘 𝐻(𝑠)

R (1-k) L

PC

k Lk L H(s)/1-H(s)

iBint

i

vint

v

vmagnet

It is also possible to estimate the “trans-admittance” between the useful current (which is

actually producing the B field seen by the beam) and the PC voltage!  

Full admittance model with an arbitrary beam screen

𝑍(𝑠) = 𝑠k𝐿𝐻(𝑠)
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|Admittance| 

Ideal Dipole + Beam Screen model – D1 case

Voltage perturbations on current are “less” 

filtered as if inductance actually decreased

However they are mostly supplying eddy 

currents, the beam will see them attenuated

𝑅𝑐 = 0.27 𝑚Ω 𝐿𝐷𝐶 = 27 𝑚𝐻
B𝑖𝑛𝑡
B𝑒𝑥𝑡

= 𝐻(𝑠) ≅
1

1 + 𝑠 2.58 𝑚𝑠
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SC magnets also have losses!
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Rload

LeqPC

−5 𝑑𝐵/𝑑𝑒𝑐

−10 𝑑𝐵/𝑑𝑒𝑐

Rload

LDCPC Zloss

Loss impedance can be modeled as  

having fractional-order 𝑠𝛼 behavior [3]

𝐿𝑒𝑞 of MQXF magnet (short model) - Nb3Sn 
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Rload

LDCPC
s



Rload

LDCPC s

𝐿𝑒𝑞 of MQXF magnet (short model) - Nb3Sn 

Assuming impedance goes with 𝑠 a 

single parameter needed to be fitted to 

get excellent agreement ☺

Fractional order confirmed also “at warm” but with a different power of 𝑠 (not discussed here)
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Cold Beam Screens still play a dominant role! 

𝐻(𝑠) of Q2-Q3-D1 Beam Screen at 80 K

An approximated formula can be used to evaluate the cut-off of the beam screen [4]

𝑓𝑛 =
2𝑛

𝜇0𝐴𝜎
For this beam screen (as Q3 - MQXF) 𝑓2 = 75.8 Hz

Magnet losses kick in first but then the 

losses of the beam screen increase more 

rapidly! Both elements together “shunt” the 

high frequency components of the current 

preventing them to affect the beam! 
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Summary

Concept of Inductance
 impact of PC current and voltage on the (magnetic field seen 

by the) beam

Observed frequency dependence of inductance

 the role of the inductance within a control loop

Losses
 in superconducting magnets themselves

 loss impedance can be modeled as fractional-order 𝑠𝛼

 the dominant role of cold beam screen in SC magnets

 fractional-order model suitable also for NC magnets
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Additional slides
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Beam Screen: Mathematical Derivation
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b
a

b

Ideal 𝑛-pole with inner conductive shell (infinitely thin)

𝐴𝑧 𝑟, 𝜃, 𝑓 = 𝜇0
𝑏

2𝑛

𝑟

𝑏

𝑛

𝐽𝑧 𝑏, 𝜃, 𝑓 𝐽𝑧 𝑏, 𝜃, 𝑓 =
𝑁𝑐𝐼0

4𝑏
cos(𝑛𝜃) sin(2π𝑓𝑡)

𝐽𝑧
′ 𝑎, 𝜃, 𝑓 = 𝜎𝑠𝐸𝑧 = −𝑗2π𝑓𝜎𝑠 𝐴𝑧 𝑎, 𝜃, 𝑓 + 𝐴𝑧

′ 𝑎, 𝜃, 𝑓

𝐴𝑧
′ 𝑟, 𝜃, 𝑓 = 𝜇0

𝑎

2𝑛

𝑟

𝑎

𝑛

𝐽𝑧
′ 𝑎, 𝜃, 𝑓

= −𝑗2π𝑓𝜎𝑠𝜇0
𝑎

2𝑛

𝑟

𝑎

𝑛

𝐴𝑧 𝑎, 𝜃, 𝑓 + 𝐴𝑧
′ 𝑎, 𝜃, 𝑓

= −𝑗2π𝑓𝜎𝑠𝜇0
𝑎

2𝑛
𝐴𝑧 𝑟, 𝜃, 𝑓 + 𝐴𝑧

′ 𝑟, 𝜃, 𝑓

𝐴𝑧
′ 𝑟, 𝜃, 𝑓 = −

𝑗2π𝑓𝜎𝑠𝜇0
𝑎
2𝑛

1 + 𝑗2π𝑓𝜎𝑠𝜇0
𝑎
2𝑛

𝐴𝑧 𝑟, 𝜃, 𝑓

𝐴𝑧
𝑡𝑜𝑡 𝑟, 𝜃, 𝑓 = 𝐴𝑧 𝑟, 𝜃, 𝑓 +𝐴𝑧

′ 𝑟, 𝜃, 𝑓 =
𝐴𝑧 𝑟,𝜃,𝑓

1+𝑗2π𝑓𝜎𝑠𝜇0
𝑎

2𝑛

=
𝐴𝑧 𝑟,𝜃,𝑓

1+𝑗2π𝑓𝜏𝑛

𝜏𝑛 = 𝜎𝑠𝜇0
𝑎

2𝑛
𝑓𝑛 =

1

2𝜋𝜏𝑛
=

2𝑛

𝜇02𝜋𝑎 𝜎𝑠

𝜎𝑠

Notation and calculations taken directly from [XX] – rewritten to highlight where the pole comes from 

Cut-off frequency increases with the order of the magnet: so for a given beam screen the 

shielding for a dipole is twice more effective that for a quadrupole and so on…
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Beam Screen Equivalent Circuit
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𝑖

𝑣
=

1

𝑅 + 𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)
=
1

𝑅

1

1 + 𝑠 𝜏 1 − 𝑘 + 𝑘 𝐻(𝑠)

𝑖𝐵𝑖𝑛𝑡
𝑣

=
𝑖𝐵𝑖𝑛𝑡
𝑣𝑖𝑛𝑡

𝑣𝑖𝑛𝑡
𝑣𝑚𝑎𝑔𝑛𝑒𝑡

𝑣𝑚𝑎𝑔𝑛𝑒𝑡

𝑣

𝑖𝐵𝑖𝑛𝑡
𝑣𝑖𝑛𝑡

=
1

𝑠 𝑘 𝐿

𝑣𝑖𝑛𝑡
𝑣𝑚𝑎𝑔𝑛𝑒𝑡

=
𝑠 𝑘 𝐿 𝐻(𝑠)

𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)

𝑣𝑚𝑎𝑔𝑛𝑒𝑡

𝑣
=

𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)

𝑅 + 𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)

𝑖𝐵𝑖𝑛𝑡
𝑣

=
1

𝑠 𝑘 𝐿

𝑠 𝑘 𝐿 𝐻(𝑠)

𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)

𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)

𝑅 + 𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)
=
1

𝑅

𝐻(𝑠)

1 + 𝑠 𝜏 1 − 𝑘 + 𝑘 𝐻(𝑠)

R (1-k) L

PC

k Lk L H(s)/1-H(s)

iBint

i

vint

v

vmagnet

It is also possible to estimate the “trans-admittance” between the useful current (which is

actually producing the B field seen by the beam) and the PC voltage!  

Full admittance model with an arbitrary beam screen

𝑍(𝑠) = 𝑠k𝐿𝐻(𝑠)
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Full admittance model with an arbitrary beam screen

𝑍//(𝑠) = 𝑠𝑘𝐿
𝐻(𝑠)

1 − 𝐻(𝑠)

R (1-k) L

PC

k Lk L H(s)/1-H(s)

iBint

i

vint

v

vmagnet

it is actually an impedance as 𝑟𝑒𝑎𝑙 𝑍//(𝑠) ≥ 0 for 𝑟𝑒𝑎𝑙 𝑠 ≥ 0

𝑠𝑘𝐿 //𝑍//(𝑠) = 𝑠𝑘𝐿𝐻(𝑠)
𝑣𝑖𝑛𝑡

𝑣𝑚𝑎𝑔𝑛𝑒𝑡
=

𝑠 𝑘 𝐿 𝐻(𝑠)

𝑠 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠)
=

𝑘 𝐻(𝑠)

1 − 𝑘 + 𝑘 𝐻(𝑠)
if 𝐻 𝑠 = 1 there is only a geometrical factor !

At the end everything goes as if the inductance were 𝐿 1 − 𝑘 + 𝑘 𝐻(𝑠) : 

 in low frequency 𝐻 𝑠 ≅ 1 so the PC sees the whole inductance 𝐿
 in high frequency 𝐻 𝑠 → 0 so the PC sees only the fraction 𝐿 1 − 𝑘

Bex t 

H(s) = Bint / Bext

ri
re

k = (ri / re)
2n
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Normal conducting magnets
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Some results for Normal Conducting Magnets

𝑹

𝑳
→
𝟏𝟎𝟎

𝟎. 𝟏
= 𝟏𝟎𝟎𝟎

𝜙𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑓 =
𝑣𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑓

𝑅
𝐿𝑎𝑐

(𝑓) + 𝑗2𝜋𝑓
≤
𝑣𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑓

2𝜋𝑓

Gonzales and Brambilla: Resistance and Inductance of Solid Core Magnets – IEEE Transactions on Nuclear Science – 1965 
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Courtesy TE-MSC-MM Buzio et al. 2014 

No DC bias

With vacuum chamber

∆𝐵

𝐵
≪
∆𝐼

𝐼

Very small excitation current

Some results for Normal Conducting Magnets

The actual Integrated 

Gradient was measured 

as a function of the 

frequency


