

6th POCPA Workshop Power Converters for Particle Accelerators Sept. 24th – 26th 2018 LNLS/CNPEM, Campinas - Brazil

CERN's standardised control electronics for the efficient integration of power converters in particles accelerators

Davide Aguglia

on behalf of the Electrical Power Converter (EPC) group @ CERN

Brief background FGC3 controls overview **Control features & performances** FGC3-driven power converter types @ CERN Making FGC3 control platform available to other labs Conclusion

Brief Background

Objective

Improve operation (time, HR & €) & new developments (time, HR & €)

• Adopted solutions consider:

- Standard HD & SW
 - FGC interface (Function Generator Controller) / V3 profiting from previous versions made for the LHC development & operation over 2 decades
 - Std. Boards by functionality (interlocks, measurements, regulation, etc.)
 - Std. & maintainable software's
- Flexibility
 - Control of any kind of converter (off-the-shelf or custom designed)
- Upgradable
 - Design philosophy for easy upgrades

Today's status

- >2000 standard FGC3 controllers manufactured & hundreds in operation
- All new converters equipped with FGC3
- Until 2025, major cons. with FGC3 to eradicate obsolete controls

Control structure/layers overview with FGC3

Regulation electronics platform based on FGC3" (RegFGC3)

- Several low-level controls standard boards with dedicated functions such as:
 - Measurement (e.g. DCCT, I to V)
 - Analogue or digital voltage regulation
 - Analogue or digital interlocks
 - State machine board
 - Etc.
- Connections between RegFGC3 boards, Connectors panel and FGC3 provided by back panel crate:

Back panel crate = converter type

• Fieldbus address dongle for circuit / power converter identification

7EH 866 2

RegFGC3 chassis for Thyristor Power converters

The FGC3 itself – How it's made?

Network and analog interface daughterboard RJ45 connector -100 Mbps LAN controller Analogue interface: four 500 ksps ADCs and two DACs

2 main control implementations with FGC3

- Direct interface with FGC3
 - Can receive measured values from analogue and/or digital sources
 - Can apply the calculated reference output values to analogue and/or digital output channels

Example of FGC3 Analogue Regulation Voltage Sources

3 main control implementations with FGC3

Interfacing FGC3 via low-level RegFGC3 controls

Example of direct control of power components

Control features & performances

- Main features
 - FGC3 can regulate magnet field or current and converter voltage
 - Advanced online/offline measurements analysis & Post mortem (through PowerSpy)
 - Remote firmware updates
 - Auto calibration
- Main performances
 - Regulation bandwidth up to 1 kHz
 - Data sampling at 10 kHz

(a note on PowerSpy)

- PowerSpy is a graphing tool developed by our group
 - A standalone version is freely available at <u>https://cern.ch/service-powerspy</u>
 - Reads simple CSV files no need for an FGC3!
 - There are example data files and video tutorials (<u>YouTube</u>)
 under the Help menu

A version can be licensed to run on an Apache web server at your lab. Contact Nicholas.Ziogas@cern.ch

- CERN's specifically designed power converters with FGC3
 - All sorts of switch-mode power converters (resonant, 4 quadrants, etc.)
 - Thyristors-based power converters
 - Capacitor discharge-based pulsed converters (ms-range) ۲
 - High voltage DC & power modulators converters
- **Commercial / Off-the-shelf power converter:**

• An example of the LEGO concept with commercial power supplies

• The look in reality...

- Why adding external DCCTs? (even 2x!!)
 - See **now** a **COMBO** converter (FGC3 + 2x DCCTs, taking care of the control loop performances.

DCCTs)

🕅 FGCRun+ - RBAC token expires Wed Apr 4 22:10:08 2018								
File	<u>C</u> onnect	<u>D</u> isconnect	<u>G</u> ateway	<u>F</u> GC Dat	<u>t</u> abase <u>L</u> is	st <u>A</u>nalysis Connect d	levices: compass	
PL.OP	.VS.PC	I_REF	I_MEAS	V_REF	V_MEAS	Username: ythure1	Password: ****	* * * * * * *
LK.NL	.RD.IL	647.00	647.00	3.67	3.09	RPADC.EHN2.RSOL.COMPASS	9.7656250E-04	Ì
g meas.max.abs_err								

Less than 1 mA of regulation error @ 647 A. (1 ppm of 800 A)

Stability in the range of < 10 ppm (5 ppm for 30 min)

Linearity in the range of < 5 ppm

CERN

Making FGC3 control platform available to other labs

- In 2016, project started to make FGC3 usable outside CERN
 - Software development to integrate the FGC3 into the EPICS and TANGO frameworks
 - In 2018, first FGC3 deployed into operation using EPICS at TRIUMF lab, controlling the new 20 kA power converter for their main cyclotron magnet.
 - More FGC3s will be deployed in 2018-2019 under TANGO at ESRF in Grenoble (FR) and under EPICS at FREIA in Uppsala (SE)

Making FGC3 control platform available to other labs

Synchronization: A slight integration difference outside CERN

At CERN

50 Hz pulses from Acc. Timing interface through gateway - typical phase error less than 40 ns

Outside CERN

With time of arrival of "time packets" sent by the gateway over the Ethernet every 20 ms – typical phase error of 10-20 μ s

Conclusion on FGC3 Platform

- The new standard at CERN in the medium to long term (2035 at least)
- Can manage all sorts of power converters, including commercial off-the-shelf products
- Available to other laboratories through licensing
 - With complete software stack and long term software support
 - With the guarantee that at CERN it wont be obsolete in the next couple of decades!

References

- For a deeper look on what presented:
 - Q. King, Using CERN Power Converter Controls with EPICS and TANGO, EDMS No. 2002516
 - B. Todd, FUNCTION GENERATOR / CONTROLLER 3.1 (FGC 3.1), EDMS No. 1377659
- Contacts if interested in the FGC3 platform
 - Nick Ziogas (Knowledge Transfer Group) -Nicholas.Ziogas@cern.ch

Spare slides

Spare slides

