

#### Spallation Neutron Source (SNS) Magnet Systems Overview

Robert Saethre Magnet, Power Supply, Kicker, & Chopper Systems Spallation Neutron Source Oak Ridge National Lab

ORNL is managed by UT-Battelle, LLC for the US Department of Energy



POCA06 – Campinas, Brazil September 24 - 26, 2018

#### Presentation Outline

- SNS Site Overview
- Accelerator Magnet Systems
  - Linac
  - Accumulation Ring
  - Beam transport sections
- Two Major Accelerator Upgrade Projects are Funded
  - Proton Power Upgrade
  - Second Target Station

#### Spallation Neutron Source (SNS)Commissioned in 2006



Produces high intensity pulsed neutrons for scientific research and industrial development <u>neutrons.ornl.gov/sns</u>

\*CAK RIDGE SPALLATION National Laboratory SOURCE

## Klystron Gallery, HEBT, RSB and RTBT Service Buildings

- Klystron Gallery
- Ring Service Building (RSB)
- High Energy Beam Transport Service Building(HEBT)
- Ring to Target Beam Transport Service Building (RTBT)





Design parameters: 60 Hz, 1.4 MW

Currently operating at 1.4 MW with >95% availability

J. Tang SNS 2006



#### Magnet, Power Supply, Kicker and Chopper Systems

Single "Green Screen" Magnet Status Page

476 DC Magnets 4 LEBT Choppers 8 Injection Kickers 14 Extraction Kickers

| พ่อมู่เกิดได้เกิดสี่ไม่ |                      |        |        |          |         |         |           |            |                    |          |            |              |             |           |                         |
|-------------------------|----------------------|--------|--------|----------|---------|---------|-----------|------------|--------------------|----------|------------|--------------|-------------|-----------|-------------------------|
| MEBT                    |                      | DTL    | CCL    |          | SCL     |         | HEBT      |            | RING               |          |            |              |             | RTBT      |                         |
| QH01                    | DCH01                | DCH149 | DCH104 | Q104t111 | DCH01   | QD01    | DCH06     | QH02       | DCH_A02            | DH_A10   | QV01a09    | SSXC_A01a09  | DCS_A10     | DCH05     | QH02                    |
| QH03                    | DCH04                | DCH155 | DCH106 | Q112t207 | DCH02   | QD02    | DCH08     | QH04a06    | DCH_A04            | DH_A11   | QV03a05a07 | SSXC_B01a09  | DCD_A10     | DCH08     | QH04                    |
| QH05                    | DCH05                | DCH236 | DCH110 | Q208t303 | DCH05   | QD03    | DCH14     | QH08       | DCH_A06            | DH_A12   | QV11a12    | SSXC_C01a09  | DCS_A13     | DCH14     | QH06t10e                |
| QH07                    | DCH10                | DCH242 | DCH112 | Q304t311 | DCH06   | QD04    | DCH16     | QH10       | DCH_A08            | DH_A13   |            | SSXC_D01a0   | DCD_A13     | DCH16     | QH12                    |
| QH08                    | DCH11                | DCH323 | DCH204 | Q312t407 | DCH09   | QD05    | DCH22     | QH12t18e   | DCH_B02            | DH_Main  | SH04       | SSXC_A02a08  | DCS_B10     | DCH20     | QH14                    |
| QH10                    | DCH14                | DCH329 | DCH206 | QH00     | DCH10   | QD06    | DCV05     | QH20       | DCH_B04            |          | SH06       | SSXC_B02a08  | DCD_B10     | DCH22     | QH16                    |
| QH12                    | DCV01                | DCH418 | DCH210 | QH102    | DCH13   | QD07    | DCV07     | QH22       | DCH_B06            | QH02a08  | SV03a07    | SSXC_C02a08  | DCS_B13     | DCH28     | QH18t24e                |
| QH14                    | DCV04                | DCH424 | DCH212 | QH408    | DCH14   | QD08    | DCV15     | QH24       | DCH_B08            | QH04a06  | SV05       | SSXC_D02a08  | DCD_B13     | DCH30     | QH26                    |
| QV02                    | DCV05                | DCH513 | DCH304 | QH410    | DCH17   | QD09    | DCV17     | QH26a28a32 | DCH_C02            | QH10a13  |            | OTU AD40e44  | DCS_C10     | DCV05     | QH28                    |
| QV04                    | DCV10                | DCH519 | DCH306 | QV101    | DCH18   | QD12    | DCV21     | QH30       | DCH_C04            |          |            |              | DCD_C10     | DCV07     | QH30                    |
| QV06                    | DCV11                | DCH612 | DCH310 | QV103    | DCH21   | QD13    | DCV23     | QH34       | DCH_C06            | QSC_A01  | Oct_A08    | QTH_AC02a08  | DCS_C13     | DCV11     | QV01                    |
| QV09                    | DCV14                | DCH618 | DCH312 | QV409    | DCH22   | QD14    |           | QV01       | DCH_C08            | QSC_A02  | Oct_B08    |              | DCD_C13     | DCV13     | QV03                    |
| QV11                    |                      | DCV152 | DCH402 | QV411    | DCH25   | QD15    |           | QV03       | DCH_D02            | QSC_A03  | Oct_C08    |              | DCS_D10     | DCV15     | QV05t110                |
| QV13                    |                      | DCV158 | DCH404 | QMCS     | DCH26   | QD16    | DH11      | QV05       | DCH_D04            | QSC_A05  | Oct_D08    | QTH_CD10a1   | DCD_D10     | DCV17     | QV13                    |
| •                       |                      | DCV239 | DCH406 | QMCS JT  | DCH29   | QD17    | DH12t18   | QV07       | DCH_D06            | QSC_A07  | Oct_A09    | QTH_CD04a00  | DCS_D13     | DCV19     | QV15                    |
| Trips                   | 5                    | DCV245 | DCH408 | LEDP     | DCH30   | QD18    |           | QV09       | DCH_D08            | QSC_A08  | Oct_B09    | QIV_A01a09   | DCD_D13     | DCV21     | QV17                    |
|                         |                      | DCV326 | DCV103 | DCV401   | DCV01   | QD19    |           | QV11       | DCV_A01            | QSC_A09  | Oct_C09    | QIV_AC11a12  |             | DCV23     | QV19t250                |
| Beam                    |                      | DCV332 | DCV105 | DCV410   | DCV02   | QD20    | INRSB     | QV13t19o   | DCV_A03            | QSC_B01  | Oct_D09    | QTV_A03a05a0 |             | DCV28     | QV27                    |
|                         |                      | DCV421 | DCV109 | DCV411   | DCV05   | QD21    | DCH24     | QV21       | DCV_A05            | QSC_B02  |            |              |             | DCV30     | QV29                    |
| 59.9                    | Hz                   | DCV427 | DCV111 | DCV00    | DCV06   | QD22    | DCH28     | QV23       | DCV_A07            | QSC_B03  | SXC_A01    |              |             |           |                         |
| 1.405 N                 | ΛW                   | DCV516 | DCV203 | DCH00    | DCV09   | QD23    | DCH30     | QV25t310   | DCV_A09            | QSC_B05  | SXC_B01    | alv_Bosausau |             | DH13      | Edmp QH01               |
| 28.2                    | mA                   | DCV522 | DCV205 |          | DCV10   | QD24    | DCV29     | QV33       | DCV_B01            | QSC_B07  | SXC_C01    |              |             | ExSptm    | Edmp QV02               |
| 20.2                    | IIIA                 | DCV615 | DCV209 |          | DCV13   | QD25    | DCV31     |            | DCV_B03            | QSC_B08  | SXC_D01    | alv_Cosausau |             |           |                         |
|                         |                      | DCV621 | DCV211 |          | DCV14   | QD26    | DH25      | injSptm    | DCV_B05            | QSC_B09  | SXC_A02    |              | Legend      | - Roundar | d border indicator PS   |
|                         |                      |        | DCV303 |          | DCV17   | QD27    | Injectio  | on DMP     | DCV_B07            | QSC_C01  | SXC_B02    | alv_D03a05aq |             | located i | in RSB                  |
| LEBT CI                 | hopper Scope         |        | DCV305 |          | DCV18   | QD28    | njeen     |            | DCA <sup>B08</sup> | QSC_C02  | SXC_C02    | VI           | ipare       | Green w   | ith red border indicate |
| LEBT Cho                | pper Arc Scope       |        | DCV309 |          | DCV21   | QD29    | DCD01     | Sptm       | DCV_C01            | QSC_C03  | SXC_D02    | EKICK01      |             | On but f  | aulted (PSC)            |
|                         |                      |        | DCV311 |          | DCV22   | QH00    | DCS01     | DH01       | DCV_C03            | QSC_C05  |            | EKick02      |             | Green w   | ith green border indic  |
| LEBT Ch                 | opper Switch         | nes    | DCV403 |          | DCV25   | QH10    |           | QV01       | DCV_C05            | asc_cor  |            | EKICK03      | <u> </u>    | PS On a   | nd not faulted          |
|                         |                      | Gated  | DCV405 |          | DCV26   | QH11    | Linac DMP |            | DCV_C07            |          |            | EKICKU4      | 2           | faulted   | red border indicates    |
|                         |                      | Gateu  | DCV407 |          | DCV29   | QH30    | DOUME     | 01101-05   | DCV_C09            |          | IKICKH01   | EKICKU5      | <u> </u>    | rauteu    |                         |
| Sw_A                    | On 🧧                 |        | DCV409 |          | DCV30   | QH31    | DCH05     | QH01205    | DCV_D01            |          | IKICKV01   | EKICKU6      | <u> </u>    | Red with  | green border            |
| 6 P 0.0                 |                      |        |        |          | Diag LW | QH32a33 | DCH00     | 01/02      | DCV_D03            |          | IKICKH02   | EKICKU7      | <u> </u>    | faulted   | S PS IS OIT DUE NOT     |
| 3W_D                    |                      |        |        |          | LW01    | QV00    |           | 0004       |                    |          |            | EKICKU8      |             |           |                         |
| Sw_C                    | On                   |        |        |          | LW02    | QV10    | Disalit   | 0104       |                    |          | IKICKHU3   | EKICKU9      |             |           | [                       |
| a n 🛛 🗤 🧯               |                      |        |        |          | LW03    | QV11    |           |            | DCATORA [          |          | IKICKV03   | EKick10      | E-Kicke     | r I       | E-Kicker                |
| Sw_D                    |                      | •      |        |          | UW04    | QV30    | LW01      |            |                    |          | IKICKH04   | EKick10      | I Scope     | 1         | V Scope                 |
| Cor                     | Connected            |        |        | LW12     | QV31    | LW02    |           |            |                    | IKICKV04 | EKICK12    |              |             |           |                         |
| Cor                     | mecteu               |        |        |          | LW13    | QV32    | LW03      |            |                    |          |            | EKICK13      | L Kieler C  |           |                         |
| LEBT Vac                | SparkCol<br>Itlk Sts | unt 🗾  |        |          | LW14    |         |           |            |                    |          |            | EKICK14      | I-NICKER SC | ope       |                         |
| an ou                   | in oto               | _      |        |          | LW15    |         |           |            |                    |          |            | EKICK15      |             |           |                         |
|                         |                      |        |        |          | 1002    |         |           |            |                    |          |            |              |             |           |                         |

SPALLATIO

#### Magnet Power Supply Systems

- 21 Types
- 6 Manufacturers
- 200 W to 2.6 MW power levels

- 4 Types of Controllers
- PSC/PSI
- Group 3
- PLC
- Serial

| Manufacturer | Model                                | Voltage | Current | Power   | Quantity |
|--------------|--------------------------------------|---------|---------|---------|----------|
| Керсо        | BOP 20-10M                           | 20      | 10      | 200     | 12       |
| Danfysik     | 896                                  | 35      | 20      | 700     | 334      |
| IE Power     | UD185A27V                            | 27      | 185     | 4995    | 3        |
| IE Power     | UD400A20V                            | 18      | 400     | 7200    | 7        |
| IE Power     | UD390A24V                            | 24      | 390     | 9360    | 16       |
| Ametek       | SGA20X500E                           | 20      | 500     | 10000   | 14       |
| IE Power     | UD700A18V                            | 18      | 700     | 12600   | 7        |
| ALE          | 802L (Extraction Kicker Cap Charger) | 50000   | 0.3     | 8000    | 14       |
| IE Power     | UD700A25V                            | 25      | 700     | 17500   | 1        |
| Alpha        | 625                                  | 35      | 525     | 18375   | 40       |
| IE Power     | UD375A80V                            | 80      | 375     | 30000   | 6        |
| IE Power     | UD900A51V                            | 51      | 900     | 45900   | 5        |
| IE Power     | UD4000A18V                           | 18      | 4000    | 72000   | 5        |
| IE Power     | UD900A80V                            | 80      | 900     | 72000   | 4        |
| IE Power     | UD5040A18V                           | 18      | 5040    | 90720   | 1        |
| IE Power     | UD1300A95V                           | 95      | 1300    | 123500  | 9        |
| IE Power     | UD2500A50V                           | 50      | 2500    | 125000  | 2        |
| IE Power     | UD1300A125V                          | 125     | 1300    | 162500  | 2        |
| IE Power     | UD1405A390V                          | 390     | 1405    | 547950  | 7        |
| IE Power     | Injection Bump (pulsed)              | +/-800  | 1400    | 320000  | 8        |
| IE Power     | UD6000A440V                          | 440     | 6000    | 2640000 | 1        |

**CAK RIDGE** 

## Power Supply Control/Interface (PSC/PSI) System



- Designed for SNS by Bob Lambiase at BNL
- Still in use as originally designed
- Failures of Fiber Optic transceivers and capacitors
- 1 PSI per Power Supply
- 6 PSI per PSC
- 382 Installed



#### LINAC Quad Magnet Power Supplies



#### HEBT, RING, and RTBT Magnet Systems



#### HEBT Dipole and Quadrupole Magnet Power Supplies



#### High Power DC Supplies

#### Magnet Health

| HEBT         |            |         |         | RING       |              |             | RTB          |
|--------------|------------|---------|---------|------------|--------------|-------------|--------------|
| DCH06        | QH02       | DCH_A02 | DH_A10  | QV01a09    | SSXC_A01a09  | DCS_A10     | 00406        |
| DCH08        | QH04a06    | DCH_A04 | DH_A11  | QV03a05a07 | SSXC_B01a09  | DCD_A10     | DCH08        |
| DCH14        | QH08       | DCH_A06 | DH_A12  | QV11a12    | SSXC_C01a09  | DCS_A13     | DCH14        |
| DCH16        | QH10       | DCH_A08 | DH_A13  |            | SSXC_D01a09  | DCD_A13     | DCH16        |
| DCH22        | QH12t18e   | DCH_B02 | DH_Main | SH04       | SSXC_A02a08  | DCS_B10     | DCH20        |
| DCV05        | QH20       | DCH_B04 |         | SH06       | SSXC_B02a08  | DCD_B10     | DCH22        |
| DCV07        | QH22       | DCH_B06 | QH02a08 | SV03a07    | SSXC_C02a08  | DCS_B13     | DCH28        |
| DCV15        | QH24       | DCH_B08 | QH04a06 | SV05       | SSXC_D02a08  | DCD_B13     | DCH30        |
| DCV17        | QH26828832 | DCH_C02 | QH10a13 |            |              | DCS_C10     | DCV05        |
| DCV21        | QH30       | DCH_C04 |         |            | QTH_AB10a13  | DCD_C10     | DCV07        |
| DCV23        | QH34       | DCH_C06 | QSC_A01 | Oct_A08    | QTH_AC02a08  | DCS_C13     | DCV11        |
|              | QV01       | DCH_C08 | QSC_A02 | Oct_B08    | QTH_AB04a06  | DCD_C13     | DCV13        |
|              | QV03       | DCH_D02 | QSC_A03 | Oct_C08    | QTH_BD02a08  | DCS_D10     | DCV15        |
| DH11         | QV05       | DCH_D04 | QSC_A05 | Oct_D08    | QTH_CD10a1   | DCD_D10     | DCV17        |
| DH12t18      | QV07       | DCH_D06 | QSC_A07 | Oct_A09    | QTH_CD04a06  | DCS_D13     | DCV19        |
| 01112(10     | QV09       | DCH_D08 | QSC_A08 | Oct_B09    | QTV_A01a09   | DCD_D13     | DCV21        |
|              | QV11       | DCV_A01 | QSC_A09 | Oct_C09    | QTV_AC11a12  |             | DCV23        |
| in RSB       | QV13t19o   | DCV_A03 | QSC_B01 | Oct_D09    | QTV_A03a05a0 |             | DCV28        |
| DCH24        | QV21       | DCV_A05 | QSC_B02 |            | QTV_B01a09   |             | DCV30        |
| DCH28        | QV23       | DCV_A07 | QSC_B03 | SXC_A01    | QTV_BD11a12  |             |              |
| DCH30        | QV25t310   | DCV_A09 | QSC_B05 | SXC_B01    | ¢TV_B03a05a  |             | DH13         |
| DCV29        | QV33       | DCV_B01 | QSC_B07 | SXC_C01    | QTV_C01a09   |             | ExSptm       |
| DCV31        |            | DCV_B03 | QSC_B08 | SXC_D01    | 2TV_C03a05a0 |             |              |
| DH25         | injiSptm   | DCV_B05 | QSC_B09 | SXC_A02    | QTV_D01a09   | Legend      |              |
| luite e Aire | DMD        | DCV_B07 | QSC_C01 | SXC_B02    | 2TV_D03a05a0 |             | Rounded bo   |
| Injectio     |            | DCV_B09 | QSC_C02 | SXC_C02    | VI s         | ipare       | Green with r |
| DCD01        | Sptm       | DCV_C01 | QSC_C03 | SXC_D02    | EKick01      | <u> </u>    | On but fault |
| DCS01        | DH01       | DCV_C03 | QSC_C05 |            | EKick02      |             | Green with g |
|              | QV01       | DCV_C05 | QSC_C07 |            | EKick03      | <u> </u>    | PS On and n  |
| Linac        | DMP        | DCV_C07 | QSC_C08 |            | EKick04      | <u> </u>    | Red with red |
|              |            | DCV_C09 | QSC_C09 | IKickH01   | EKick05      | Output      | faulted      |
| DCH05        | QH01a05    | DCV_D01 | QSC_D01 | IKickV01   | EKick06      |             | Red with gre |
| DCH06        | QV02       | DCV_D03 | QSC_D02 | IKickH02   | EKick07      | O           | indicates PS |
|              | QV03a06    | DCV_D05 | QSC_D03 | IKickV02   | EKick08      | 0           | Tauteu       |
|              | QV04       | DCV_D07 | QSC_D05 | IKickH03   | EKick09      | o I         |              |
| Diag LW      |            | DCV_D09 | QSC_D07 | IKickV03   | EKick10      | E-Kicke     | er E-K       |
| LW01         |            |         | QSC_D08 | IKickH04   | EKick11      | I Scope     | e V So       |
| LW02         |            |         | QSC_D09 | IKickV04   | EKick12      | <u> </u>    |              |
| LW03         |            |         |         |            | EKick13      |             |              |
|              |            |         |         |            | EKick14      | I-Kicker So | cope         |
|              |            |         |         |            | EKick15      |             |              |
|              |            |         |         |            | 11           |             |              |



QH12 QH14 QH16 H18t24e QH26 QH28 QH30

2//05t110

QV13

QV15

QV17

#### **Corrector Power Supplies**



14 Extraction PFNs - Replacing Thyratrons with Solid-State Switches

SPALLATION Neutron National Laboratory

# New Extraction Kicker PLC, Pulse Monitoring System, and Solid-State Switch



• Combined V & I monitor system

**CAK RIDGE** National Laboratory

• Send Charge Voltage and Current Pulse "Fault" signals to MPS only when detected



Thyristor

Thyratron

Thyratron & Solid-State Switch Jitter/Delay over 100 days



#### Major Accelerator Upgrades in Planning

- Proton Power Upgrade (PPU)
  - Increases the beam energy from 1.0 GeV to 1.3 GeV
  - Requires magnet currents to increase by 20%
  - All magnet power supplies were designed for this except the Injection and Extraction Kickers
  - Detailed cost and schedule with preliminary design plans by Fall 2019
  - Commissioning in 2023
- Second Target Station (STS)
  - New magnet systems for deflecting and transporting beam from ring to the second target
  - Initial cost and schedule Fall 2019
  - Commissioning in 2025

OAK RIDGE SPALLATION

tional Laboratory

#### PPU Magnet Systems - Commissioning 2023



Final designs will be complete in 2020 and will be ready to proceed to construction and procurements.

#### PPU Ring Injection Scope Detail





## SNS Injection Painting Process

- 4 horizontal & 4 vertical kickers
- Produces a controlled dynamic deflection of the beam during the 1ms injection time.





## Injection Kicker Power Supply Upgrade Requirements

- 8 Identical Power Supplies
- Arbitrary Waveform
- Max di/dt is 1.6 A/ $\mu$ s

Actional Laboratory

16

- Large signal response time is 2 kHz
- Switching Frequency 108 kHz
- Increase current from 1400 to 1600 A
- Waveforms modified to maintain same average power
- Magnet Load is 160  $\mu H,$  13 m $\Omega$
- Bipolar voltage output ± 800 V

#### **Injection Kicker Waveform Changes**



- Original Manufacturer had a design change that can meet the higher current requirements but has since gone out of business.
- We are reverse engineering the design to determine path forward.

#### Ring Extraction Region PPU Scope Detail



 Two addition kicker magnets and associated power supplies, controls, vacuum, cooling

OAK RIDGE SPALLATION National Laboratory SOURCE

#### Location of Magnet Annex Tanks in Ring Tunnel

Space required for new annex tanks already exists





Downstream tank Annex K2X-1

Upstream tank Annex K1X-1



#### Alternative to adding two PFN kicker systems

- \$3.2M cost of 2 additional systems
- Increase the current in each of the existing fourteen magnets by 20% to achieve the same deflection at 1.3 GeV as at 1.0 GeV.
  - Increase operational setpoint from 32 kV to 38.4 kV (45 kV for design margin.)
  - Existing power supply cannot charge to 45 kV in 13 ms.
  - A new Resonant Charging Power Supply (RCPS) is being developed.
  - Projected cost savings of \$2M.



#### Second Target Station Project CD-1 Fall 2019





- 69 New Magnets Quadrupoles, Dipoles, Kicker, Septum, Correctors
- 51 New Power Supplies
- Commissioning 2026

#### Conclusion

Questions?

- We have multiple openings for Electrical and RF Engineers
  - Power Electronics Engineer / NB50684392
    - <u>https://neutrons.ornl.gov/careers</u>
    - Listed as a junior engineer level but will consider upgrading for well qualified applicants.
    - This position is open to all domestic and foreign applicants.
    - ORNL is an equal opportunity employer. All qualified applicants, including individuals with disabilities and protected veterans, are encouraged to apply.



## Backup



#### Machine Availability and Electrical Systems Downtime

|                      | Last 24 hrs. | Last 7 days | FY18-3 | FY18   |
|----------------------|--------------|-------------|--------|--------|
| NP availability for: | 100.0%       | 94.1%       | 97.0%  | 94.5%  |
| MWhr:                | 2.8          | 180.2       | 694.0  | 4040.8 |
| Avg MWhr/day:        | 33.6         | 31.8        | 30.7   | 31.7   |
| NP Hrs. delivered:   | 2.0          | 128.0       | 525.8  | 2888.1 |

#### AC Power Distribution

HVCM

- Power Supplies
- TVA 161 KV Power
- Other(s)



**Breakdown (Down Time Related Only)** 



#### MEBT Steerer and Accelerator Corrector Efficiency

LINAC Quad Efficiency vs. Output Current



CAK RIDGE SPALLATION National Laboratory SOURCE

#### Linac Quadrupole Power Supply Efficiency

LINAC Quad Efficiency vs. Output Current



CAK RIDGE SPALLATION National Laboratory SOURCE

#### SCR Based Switching High Power Supplies Average Efficiency By Accelerator Section



100 ppm stability requirement



#### Plan View STS



Actional Laboratory

#### Linac Corrector and Quadrupole Power Supply Systems





SCL Quads: Alpha Scientific 35V, 525A, PSI Controller

Linac Correctors: Danfysik PSI Controller CCL Quads: IE Power Type II and III 20V-400A, 80V-375A PSI Controller

CAK RIDGE SPALLATION National Laboratory SOURCE

#### HEBT Service Building Power Supplies





## Four PPS Controlled Power Supplies 1 in HEBT, 2 in RSB, and 1 in RTBT

Dipole and Quadrupole Magnet Power Supplies



#### Ring Service Building Power Supplies





129 Corrector Power Supplies

14 Extraction PFNs - Replacing Thyratrons with Solid-State Switches

30 **CAK RIDGE** SPALLATION Neutron SOURCE

#### Power Supply Block Diagram





Figure 1 Basic 1,400A, ±900V Converter System with Energy Storage Capacitor CS and Six Pulse SCR Rectifier

#### **Resonant Charging Scheme**



Timing Sequence: C0 is always Charged to 1250Vdc

- Charge IGBT closes, Current resonantly charges the PFN through L<sub>charge</sub>
- 2. When the energy in  $L_{charge}$  and  $C_{pfn}$  equals the final energy the Charge IGBT opens 3. The current continues to charge  $C_{pfn}$  through the freewheel diode
- 4. When the voltage on C<sub>pfn</sub> is equal to the set point the Deque IGBT closes and stops the charge
- The series diode keeps the voltage from discharging back through the transformer 5.