GENERAL INTRODUCTION TO XAS

Júlio Criginski Cezar

LNLS - Laboratório Nacional de Luz Síncrotron CNPEM - Centro Nacional de Pesquisa em Energia e Materiais

julio.cezar@lnls.br

5th School on X-ray Spectroscopy Methods - 22-23/Aug/2016

Spectroscopy??

• It seems that was Sir Isaac Newton (him again...) that called spectra the dispersion of white light by a prism.

http://www.webexhibits.org/colorart/bh.html

- Distorted definition: spectroscopy is how a physical property depends on the energy (wave length or number, frequency) of a test probe (radiation, electrons, neutrons, ions, etc);
- Normally the variations (spectra) can be indirectly correlated with useful information by means of models;
- Do you like acronyms? Pick yours...: XAS, XANES, EXAFS, XMCD, XMLD, RIXS, XES, XRF, XPS, UPS, ARPES, ARUPS, EELS, FTIR, AES, UVS, PDMS, TOFMS, NMR, EPR, FMR, ESCA, μSR, INS, LIBS, CRIMS, IRMS, MIMS, ZECSY, ESR, TOCSY, SEFT, QMS, ...

X-RAY ABSORPTION

PHYSICAL PROPERTY absorption of electromagnetic radiation by matter ENERGY/FREQUENCY check the electromagnetic spectrum...

www2.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html

Julio C. Cezar (LNLS/CNPEM)

OUTLINE

- VERY QUICKLY: OUR RADIATION SOURCE
- 2 The classic XAS experiment
- 8 SOFT, TENDER AND HARD X-RAYS: EXPERIMENTAL ASPECTS
 - VARIANTS OF X-RAY ABSORPTION
 - Natural linear dichroism
 - Magnetic Linear Dichroism
 - Magnetic Circular Dichroism

Concluding...

OUTLINE

VERY QUICKLY: OUR RADIATION SOURCE

2 The classic XAS experiment

3 SOFT, TENDER AND HARD X-RAYS: EXPERIMENTAL ASPECTS

VARIANTS OF X-RAY ABSORPTION

- Natural linear dichroism
- Magnetic Linear Dichroism
- Magnetic Circular Dichroism

Concluding...

Synchrotrons

- particle accelerator: e⁻
- continuous radiation energy spectra: μwaves to γ-rays
- 1^{st} , 2^{nd} or 3^{rd} generation

en wikipedia org/wiki/synchrotron_light_source

Julio C. Cezar (LNLS/CNPEM)

5th XAFS School

SYNCHROTRON RADIATION

 $http://photon-science.desy.de/research/studentsteaching/primers/synchrotron_radiation/index_eng.html$

bend magnets

insertion devices

OUTLINE

VERY QUICKLY: OUR RADIATION SOURCE

2 The classic XAS experiment

3 SOFT, TENDER AND HARD X-RAYS: EXPERIMENTAL ASPECTS

VARIANTS OF X-RAY ABSORPTION

- Natural linear dichroism
- Magnetic Linear Dichroism
- Magnetic Circular Dichroism

Concluding...

The classic X-ray absorption experiment

Julio C. Cezar (LNLS/CNPEM)

5th XAFS School

Campinas, 22/Aug/2016 10 / 42

HOW RADIATION INTERACTS WITH MATTER

Radiation-matter interaction has several components:

- photoelectric effect
- Compton scattering
- pair creation

Fig 2-17 Eisberg & Resnick

Julio C. Cezar (LNLS/CNPEM)

11 / 42

XAS: ABSORPTION EDGES

from Neutron and X-ray Spectroscopy, E. Lelièvre et al, Springer

Julio C. Cezar (LNLS/CNPEM)

XAS: ABSORPTION EDGES

XAS: ELECTRON TRANSITION

from J. Stohr presentation found at http://ast.coe.berkeley.edu/srms/

XAS IN ATOMS: ARGON

XAS IN SOLIDS: COBALT OXIDE

OUTLINE

- VERY QUICKLY: OUR RADIATION SOURCE
- 2 The classic XAS experiment

3 Soft, tender and hard X-rays: experimental aspects

- VARIANTS OF X-RAY ABSORPTION
 - Natural linear dichroism
 - Magnetic Linear Dichroism
 - Magnetic Circular Dichroism

Concluding...

TENDER, HARD, SOFT: X-RAYS FOR ALL TASTES...

www2.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html

Julio C. Cezar (LNLS/CNPEM)

5th XAFS School

Campinas, 22/Aug/2016 18 / 42

ATTENUATION LENGTH

X-Ray Attenuation Length

Cu Density=8.96, Angle=90.deg

Attenuation length is the reciprocal of linear absorption coefficient. It is tabulated.

Optimun signal/noise thickness is when edge jump is equal to 1.

- Cu K edge: 6 μ m
- Cu L edge: 120 nm

Julio C. Cezar (LNLS/CNPEM)

XAS: DETECTION MODES

from Reiko Nakajima, PhD thesis (1998)

XAS: DETECTION MODES

from J. Stohr presentation found at http://ast.coe.berkeley.edu/srms/

THE ELECTRON MEAN FREE PATH

FLUORESCENCE VS ELECTRON YIELD

Julio C. Cezar (LNLS/CNPEM)

TAKE IN CONSIDERATION

HARD X-RAYS

- Are bulk sensitive
- ② Can be used in transmission
- Iluorescence: very effective
- On't need ultra high vacuum

Soft X-rays

- Are very, very surface sensitive
- Ø Normally use electron yield
- Fluorescence: weak
- O Need ultra high vacuum

OUTLINE

- VERY QUICKLY: OUR RADIATION SOURCE
- 2 The classic XAS experiment

3 SOFT, TENDER AND HARD X-RAYS: EXPERIMENTAL ASPECTS

- VARIANTS OF X-RAY ABSORPTION
 - Natural linear dichroism
 - Magnetic Linear Dichroism
 - Magnetic Circular Dichroism

5 Concluding...

LET'S START: X-RAY ABSORPTION SPECTROSCOPY

5th School on X-ray Spectroscopy Methods			
Program			
Time	August, 22 nd	Title	Speaker
9h-10:30h	Plenary Lecture 1 Auditório Anel	General Introduction to XAFS	Julio Cezar
10:30h-11h	Coffee break		
11h-12:30	Plenary Lecture 2 Auditório Anel	XANES: Information content, high resolution and simulations	Frederico Lima
12:30-14h	Lunch		
14h-18h	Parallel Session A Auditório LNNano	Athena	Santiago Figueroa and Flávio Vicentin
	Parallel Session B Sala 211 Dir. LNLS	Sum Rules XMCD	Julio Cezar
	Parallel Session C Auditório LNLS	XRF Microscopy and Micro-Spectroscopy	Carlos Peréz, Dalton Abdala and Hudson Wallace
18h-19h	Visit to LNLS Beamlines		Douglas Galante
19h-20h	Poster Session and Cocktail		
Time	August, 23 rd	Title	Speaker
9h-10:30h	Plenary Lecture 3 Auditório Anel	High-Resolution Resonant Inelastic Soft X-ray Scattering	Jan-Erik Rubensson
10:30h-11h	Coffee break		
11h-12:30h	Plenary Lecture 4 Auditório Anel	EXAFS	Santiago Figueroa
12:30h-14h	Lunch		
14h-18h	Parallel Session A Auditório LNNano	Artemis	Santiago Figueroa and Dalton Abdala
	Parallel Session D Sala 11 dir. LNLS	XEOL	Verônica Teixeira and Mário Valerio
	Parallel Session E Auditório LNLS	XANES Simulations	Frederico Lima

Julio C. Cezar (LNLS/CNPEM)

WE SHOULD, BUT WE'RE NOT GOING TO DISCUSS ABOUT...

- $\operatorname{EXAFS}\,$ Extended X-ray absorption fine structure
 - XRF X-ray fluorescence
 - **RIXS** Resonant inelastic X-ray scattering
 - XES X-ray emission spectroscopy
 - $\rm XEOL~$ X-ray excited optical luminescence
 - DAFS Diffraction anomalous fine structure
 - PEEM Photoelectron emission microscopy
 - STIF Some technique that I forgot...

SOFT X-RAYS ABSORPTION SPECTROSCOPY

Julio C. Cezar (LNLS/CNPEM)

BREAKING THE SYMMETRY 1: STRUCTURAL ANISOTROPY

- Radiation interacts strongly with electrons;
- The strongest term in the interaction is between the photon electric field and electrons;
- Near edge features require empty states in the atom;
- Fermi Golden Rule in the dipolar approximation:

$$T_{if} \propto |\langle f|\hat{e} \cdot \hat{r}|i\rangle|\delta(E_i - E_f)\rho(E_f)$$
(1)

EXPLORING STRUCTURAL ANISOTROPIES: PEROVSKITES

Julio C. Cezar (LNLS/CNPEM)

NATURAL LINEAR DICHROISM IN $LaMnO_3/SrTiO_3$

- X-ray Linear Natural Dichroism (XLD ou XLND)
- Grazing incidence to probe in and out of plane directions;

MAGNETIC LINEAR DICHROISM

- X-ray Linear Magnetic Dichroism (XMLD)
- Anisotropy "induced" by magnetization;
- Adds up to natural dichroism!!
- Attention to the geometry: magnetic field perpendicular the X-ray beam propagation.

YBINNI4

- cubice crystal lattice;
- Yb and In offset FFC lattices by 1/4, 1/4, 1/4;
- Ni tetrahedra around Yb e In;
- magnetic order below 3 K;
- Yb valence fixed 3+ .

YBINNI4: DEBATABLE GROUND STATE

XMLD: YBINNI4

XMLD at the YB M_5 edge

MAGNETIC CIRCULAR DICHROISM

- X-ray Circular Magnetic Dichroism (XMCD)
- Anisotropy once more "induced" by magnetization;
- Effect does not add up with linear dichroism (natural or magnetic)
- Attention to the geometry: magnetic field parallel to the X-ray beam propagation direction

FE XMCD ON CA_2FEREO_6

XMCD: SUM RULES INTEGRALS

$$m_{orb} = \langle L_Z \rangle = -n_h \frac{4q}{3r} \qquad m_{spin} = 2 \langle S_Z \rangle + 7 \langle T_Z \rangle = -n_h \frac{6p - 4q}{r}$$
Julio C. Cezar (LNLS/CNPEM) 5th XAFS School Campinas, 22/Aug/2016 39 / 42

XMCD IS REALLY COOL!!

• XMCD is one of the most powerful tools to study magnetic materials :

- magnetic information for each element in the sample;
- for the same element, magnetic information for different orbitals;
- element sensitive hysteresis curves;
- element sensitive magnetic anisotropy;
- very sensitive: soft X-rays can detect hundreths of monolayer ;
- ... but requires very good experimental data;
- ... sum rules are not universal. To avoid troubles: spectra simulation (ab initio, multiplets,...)!
- ... requires a good week of night shifts in the beam line.

OUTLINE

- VERY QUICKLY: OUR RADIATION SOURCE
- 2 The classic XAS experiment
- 3 SOFT, TENDER AND HARD X-RAYS: EXPERIMENTAL ASPECTS
 - VARIANTS OF X-RAY ABSORPTION
 - Natural linear dichroism
 - Magnetic Linear Dichroism
 - Magnetic Circular Dichroism

5 Concluding...

XAS: TAKE AWAY MESSAGES

- XAS: intrisically element sensitive;
- XAS: needs a synchrotron;
- Can use hard or soft X-rays;
- Different detection modes:
 - transmission: well suited for hard X-rays; bulk sensitive;
 - fluorescence: works better with hard X-rays; bulk sensitive;
 - total electron yield: soft X-rays; surface sensitive;
- Absorption spectroscopy requires empty levels at the absorbing atom.