X-rays and high pressure

Narcizo Souza Neto - narcizo.souza@lnls.br

Thanks to:

Ph.D. students: **Ricardo Reis Larisa Veiga**

Post-doc: Francisco Maia

EuO work: Daniel Haskel (APS) Y-C Tseng (APS) Gerard Lapertot (CEA) Jiyong Zhao (APS) Ercan Alp (APS) Guoyin Shen (Carnegie) Stanislav Sinogeikin (Carnegie) Sirius Beamline team: Alexey Espindola Jairo Fonseca Marcos Eleoterio Frederico Lima Alexandre Magnus

Shockwave experiment **Ricardo Samad (IPEN) Nilson Dias (IPEN) Jefferson Bettini (LNNano) Raul Freitas (LNLS)**

X-rays and pressure in the universe: Stars, supernovas, ...

Neutron star from Nasa

Range of pressure in the universe

From: https://www.gl.ciw.edu/static/users/rhemley/HemleyWilliamson2004.htm

Pressure to make you hungry...

Pressure cooking since 1679 (Wikipedia) Lid seals shut trapping steam inside Trapped steam builds pressure and raises cooking temperature. Wet cooking (steaming and boiling) speeds heat transfer to food. P up to 2 atm **Cold press Pasteurization:** Pressed to about 0.5 GPa (5000 atm)

PV = nRT

A lot of scientific studies on foods under pressure!!!

From Amazon.com

High pressure crystallography

Macromolecular structures investigated under pressure

Also: high-pressure cryocooling methods for protein crystals to preserve them and to diffract better.

Pressure and temperature inside earth

From: DiscoveryMagazine

High pressure crystallography

X-ray diffraction under pressure with the advent of microfocus beamlines

Enormous impact to study earths interior in the last 20 years!!!

Pressure = Force / Area

4 Ton Elephant on one foot:

Pressure =

65 kg woman on 1cm² heel: Pressure =

1 Bar = 0.987 Atmosphere

Pressure = Force / Area

Pressure = 190 Ton / 1 cm² = 19 GPa (1.9x10⁵ Bar) (Easily achievable today at the XDS beamline downstairs)

XRD under pressure

XRD at High Pressures @LNLS

Up to 80 GPa for now

- High energies: > 25 keV
- Small beam sizes: < 0.15 x 0.15 mm^2
- In-situ pressure calibration,
- Temperature control
 - 10 K (cryostat)
 - 3000 K (laser heating, comissioning)

- Volume collapse with pressure: almost all rare earths
- Mixed valence: half of all rare earths
- 4f electrons: magnetism, electronic structure

XRD at Sector 16/HPCAT/APS: structure

- Lattice contraction as a function of pressure
- Electronic instabilities at low pressure
- 1.00 -– B1 B1 -> B2 transition 0.95 - B1 0.770 **B2** 0.90 Local volume expansion 10 11 12 13 0 760 0.85 0 754 Coordination change 0.80 B2: CsCl B1: NaCl 0.75 - Predicted valence 0.70 transition to Eu³⁺ 0.65 0.60

10

n

20

30

40

70

60

50 Pressure (GPa) 80

90

Valence change towards $3 + (4f^6, 5d^1)$ Up to 40 GPa, as expected.

Contrary to the expected valence goes from 2.3+ back to 2+

Homogeneous VS inhomogeneous

- Homogeneous valence at each crystal phase
- Inhomogeneous valence in the coexisting phase region

(Dis)A

(Dis)Agreement with theory

Bond-valence parameterization:

Brese & O'Keeffe, ACTA Cryst. B 47, 192 (1991). **"bond length is a unique function of bond valence"**

$$v_{ij} = \exp[(R_{ij} - d_{ij})/b].$$
 $\sum_j v_{ij} = V_i.$

Constants:

$$\mathbf{b} = 0.37 \text{ Å}$$
; \mathbf{R}_{ij} (Eu²⁺) = 2.147 Å; \mathbf{R}_{ij} (Eu³⁺) = 2.076 Å

X-ray Magnetic Circular Dichroism

High pressure XAS/XMCD

4-ID-D beamline

Advanced Photon Source

In-situ pressure calibration: DAC translated to a Ruby fluorescence station

Performed experiments up to **90 GPa**, so far. P > 150 GPa are possible

High Pressure Research 28, 185 (2008) Rev. Sci. Instrum., 78, 083904 (2007)

at APS: Europium monochalcogenides

T_c increases with lattice contraction: 4f – 5d mixing (indirect exchange)

EuO under pressure

P < 14 GPa: quantum state of fractional 4f/5d occupations

14 < P < 44 GPa: fluctuating valence between Eu²⁺ and Eu³⁺; homogenously distributed; with characteristic frequency determined by the 4f bandwidth.

44 < P < 59 GPa: inhomogeneous valences concomitant with the mixture of NaCl and CsCl phases

P > 59 GPa: reentrant Eu²⁺ valence ground state is unexpectedly recovered!

Bond-valence parameterization does not work universally

Strong implications to the physics of 4f systems

Science editors' choice v337 p504, (2012).

Pressure = 50000 Ton / 1 cm² = 5 TPa (5x10⁸ Atm) (That's more challenging and motivating)

• Must go for extreme pressure, temperature and field

EMA beamline at SIRIUS

A3m-SR

Extreme condition XRD/XMCD/XES/XRS

With very small x-ray beamsize

In a good day

High pressure with DAC

General specifications

Source		SCU16.5 or IVU19 @ lo	ow β-straight
Energy range		2.7 keV to 35 keV	
Monochromator		Vertical bounce DCM, S	i (111) & Si (220)
Polarization control		Circular/Linear using ¼ wave plate	
Photon Flux hutch: 10 keV	@ Magnet@ Laser hutch:	 1×10¹⁴ photons/s (direct focusing, DF) 4x10¹³ photons/s (direct focusing, DF) 2x10¹² photons/s (secondary source, SS) 	
Beamsize hutch: (divergence) 10 keV	@ Magnet@ Laser hutch:	2x1 μm² (1x0.2 mrad ² 0.5x0.5 μm ² (4x0.4 mra 0.3x0.5 μm² (0.7x0.4 μ) (DF) ad ²) (DF) mrad ²) (SS)
Flux at sample Direct focusing Laser hutch (for magnet hut	e w/ g at ch, x3) 10 ¹⁷ 10 ¹⁷ 10 ¹⁷ 10 ¹⁷ 10 ¹⁷ 10 ¹⁷ 10 ¹⁷ 10 ¹⁷ 10 ¹⁷ 10 ¹⁷	4 mrad 10 ¹⁴ 10 ¹³ 10 ¹² 10 ¹¹ 10 ¹⁰ 10 ¹⁵ 20 25 30 35 40 E [keV]	2.3 mrad 5 10 15 20 25 30 35 4 E [keV]

XMCD/XMLD under pressure

Large bore SC magnet

< 2µm² focused beamsize With long working distance

Custom anvil cells

EMA beamline at SIRIUS

High pressure Lab

Saser Hutch

LaserLab

Storage

Iagner

User Space

Even more extreme pressures in the future ???

Ac machine

Shockwaves + X-rays

Shockwave + Sirius ?

Laser induced extreme conditions experiments at Sirius

By Francisco Maia et al.

Proof of concept shockwave experiment

Irradiate graphite with high power laser!

SCIENTIFIC REPORTS OPEN Synthesis of diamond-like phase from graphite by ultrafast laser driven dynamical compression

Received: o6 January 2015 Accepted: o8 June 2015 Published: o7 July 2015

Francisco C. B. Maia¹, Ricardo E. Samad², Jefferson Bettini³, Raul O. Freitas¹, Nilson D. Vieira Junior² & Narcizo M. Souza-Neto¹

Electron diffraction of nanocrystals

"Nano onion rings":

Extreme pressure, temperature, magnetic field in the universe

Lots of other high pressure synchrotron techniques

A playground for discovering new materials to improve life and understand the universe.

From: www.nasa.gov

From: Spring8:

Questions?