

X-Ray optics simulations and current developments on software packages - I

Ruben Reininger X-ray Science Division Argonne National Laboratory <u>rreininger@anl.gov</u>

SyncLight 2015, the São Paulo School of Advanced Sciences (ESPCA) on Recent Developments in Synchrotron Radiation

Thanks and Slides

Xianbo Shi - APS (XS)
Manuel Sanchez del Rio- ESRF (MS)
Oleg Chubar - NSLS-II (OC)

Rules: Do not hesitate to interrupt to ask questions! Just do it! Rules: Do not hesitate to interrupt to ask questions! Just do it!

No Ercan

Outline

MPackages

SPECTRA

- ID source
- **SHADOW**
 - Simple focusing
 - Migh resolution soft x-ray monochromator
 - meV resolution hard x-ray monochromator
- ✓SRW- Wave propagation
 - Partial coherence

⊠Source

Ø Brightness

- 🗹 Flux
- 2D Phase space
- "Coherent modes"
- Polarization
- Mandwidth

ĭ Experiment

- 🧭 Coherent Flux
- 🗹 Flux
- Polarization
- 🧭 Spot Size
- Angular divergence
- Resolution

⊠Source

Ø Brightness

- 🗹 Flux
- 2D Phase space
- "Coherent modes"
- Polarization
- Mandwidth

ĭ Experiment

- 🧭 Coherent Flux
- 🗹 Flux
- Polarization
- 🧭 Spot Size
- Angular divergence
- Mathematical Resolution

⊠Source

Ø Brightness

- 🗹 Flux
- 2D Phase space
- "Coherent modes"
- Polarization
- Mandwidth

☑ Experiment

- 🧭 Coherent Flux
- 🗹 Flux
- Polarization
- 🧭 Spot Size
- Angular divergence
- Resolution

Things to remember: Cannot have all Optics are not perfect

⊠Source

Ø Brightness

- 🗹 Flux
- 2D Phase space
- "Coherent modes"
- Polarization
- Mandwidth

MExperiment

- 🧭 Coherent Flux
- 🗹 Flux
- Polarization
- 🧭 Spot Size
- Angular divergence
- Resolution

Things to remember: Cannot have all Optics are not perfect

Life is a compromise

Source Codes: BM, Undulator, Wiggler

Spectra: http://radiant.harima.riken.go.jp/spectra/

☑SRW: <u>https://github.com/ochubar/SRW</u>

☑XOP: https://www1.aps.anl.gov/Science/Scientific-Software/XOP

☑ Wave: http://www.helmholtz-berlin.de/forschung/oe/fg/nanometeroptik/methods/

XRT: <u>http://pythonhosted.org//xrt/index.html</u>

Shadow: https://www1.aps.anl.gov/Science/Scientific-Software/XOP

Ray Tracings: Geometrical

Shadow: https://www1.aps.anl.gov/Science/Scientific-Software/XOP

☑ Ray: <u>http://www.helmholtz-berlin.de/forschung/oe/fg/nanometeroptik/methods/</u> <u>software_en.html#c157167</u>

XRT: <u>http://pythonhosted.org//xrt/index.html</u>

McXTrace: <u>http://www.mcxtrace.org</u>

Wave Propagation: Diffraction

SRW: <u>https://github.com/ochubar/SRW</u>

Phase: <u>http://www.helmholtz-berlin.de/forschung/oe/fg/nanometeroptik/methods/</u> <u>software_en.html#c157167</u>

XRT: <u>http://pythonhosted.org//xrt/index.html</u>

Shadow + Hybrid: https://www1.aps.anl.gov/Science/Scientific-Software/XOP

e beam

Single e emission

2.5 10¹⁴ p/s/0.1%

Single e emission

9

Written in the transition from Tantalus to Aladdin Beginning of the 80s

Scientific motivation: Grating monochromator design, TGM, ERG, toridal, spherical mirrors.

Monte Carlo ray tracing program *designed* to simulate X-ray optical systems

Requirements

- Accuracy and reliability
- Easy to use
- Flexibility
- Economy of computer resources
- VAX-11 Computers

Efficient MC approach

- Reduced number of rays
- Exact simulation os SR sources
- Vector calculus
- Modular
- User-interface
- Available to users

Two years development Fortran 77+VAX/VMS extensions

Actively expanded by collaborations Many with Manuel

- XOP
 - quick calculations (synchrotron spectra, reflectivities, rocking curves, attenuation coeffs. etc.)
 - generic data visualization and analysis
 - specific applications ("extensions")
 - Collaboration work ESRF (M Sanchez del Rio)-APS (Roger Deius)
 - Freely available to users (>10 years)
 - Large user community (>400 users in tens of laboratories)
 - Multiplatform (Windows, Unix, MacOSX)
 - Written in IDL (using Fortran and C modules). Embedded license.
- ShadowVUI: interface that uses the standard SHADOW calculation engine
 - "Easy" to use
 - High performance graphics
 - Macro language
 - Tutorials
 - BL.Viewer

- XOP
 - quick calculations (synchrotron spectra, reflectivities, rocking curves, attenuation coeffs. etc.)
 - generic data visualization and analysis
 - specific applications ("extensions")
 - Collaboration work ESRF (M Sanchez del Rio)-APS (Roger Dejus)
 - Freely available to users (>10 years)
 - Large user community (>400 users in tens of laboratories)
 - Multiplatform (Windows, Unix, MacOSX)
 - Written in IDL (using Fortran and C modules). Embedded license.

But look awful

- ShadowVUI: interface that uses the standard SHADOW calculation engine
 - "Easy" to use
 - High performance graphics
 - Macro language
 - Tutorials
 - BL.Viewer

💓 XOP	2.3				
Xop S	ource O	ptics To	ols Help)	
Logo	Tree	PT	Cmd (CD	
			and the second		
		-			
				-	
			201		
		16	12		
25		A.C.	no.		and the second second
5					1
		X	d'	a f	2
1	77	12		The	-
Contractor.				A	

What SHADOW can do?

Beam cross sections (focal spot, PSF, etc)

source characteristics (dimensions, depth, emittances) vignetting (apertures, dimension of oe's) effect of mirror shape: aberrations, errors... effect of mirror imperfections (slope errors, roughness?)

Energy resolution

- Flux and power (number of photons at a given position, absorbed/transmitted power, etc)
- Other aspects? (polarization, coherence effects, etc.)

What SHADOW can do?

Beam cross sections (focal spot, PSF, etc)

source characteristics (dimensions, depth, emittances) vignetting (apertures, dimension of oe's) effect of mirror shape: aberrations, errors... effect of mirror imperfections (slope errors, roughness?)

Energy resolution

- Flux and power (number of photons at a given position, absorbed/transmitted power, etc)
 - Other aspects? (polarization, coherence effects, etc.)

SHADOW3: a new version of the synchrotron X-ray optics modelling package J. Synchrotron Rad. (2011). 18, 708–716

Manuel Sanchez del Rio,^a* Niccolo Canestrari,^{b,a} Fan Jiang^c and Franco Cerrina^c⁺²

API: Scripts, macros: C, Fortran, Python

SHADOW Optical system

Figure 1.1: Sample layout with source and optical system.

Principle of Ray Tracing

Trace (the beamline)

Principle of Ray Tracing

Start SHADOW

Start SHADOW

000	XX	OP 2.4	
Xop Source	Optics	Tools	Help
Load extension) 		
Load applicati	ion input	file	
Show/Edit envi	ironment		
Change color t	table		
Set default color table			
Change Widget Font 🕞			
Quit			A. S.
A population			

Start SHADOW

SHADOW VUI Screen

Shadow VUI 1.12			
ShadowVUI Edit Run Results PreProcessors Util Tools Help			
Source:			
🛇 Geometrical 🗢 BM 🐟 Wiggler 💠 Undulator			
Modify Run SHADOW/source			
PlotXY: I Histo1: InfoSh SourcInfo Spectrum			
Optical System:			
🔷 oe 1			
Add oe Modify oe Delete oe Delete all Run SHADOW/trace			
PlotXY: I Histo1: Info on: I BLViewer			
Macros:			
1			
Add macro Edit Delete macro Run macro			
Working directory:			
Browser J/Users/rreininger/Documents/Scratch			

SHADOW VUI Screen

O O O X ID30.ws - Sh				
ShadowVUI Edit Run Results PreProcessors Tools Help				
Load Workspace				
Load Example Workspace 🖻 From Example Dir				
Import From Tutorial Dir				
Save Workspace				
Default Workspace				
VOR RINORIES DERUC				
Add oe Modify oe Delete oe Delete all Run SHADOW/trace PlotXY: = Histo1: = Info on: = BLViewer				
Macros:				
1				
Add macro Edit Delete macro Run macro				
Working directory:				
Browser J/Users/rreininger/Documents/Scratch				

~

SHADOW VUI Screen

Shadow VUI 1.12
ShadowVUI Edit Run Results PreProcessors Util Tools Help
Source:
🛇 Geometrical 🐟 BM 🐟 Wiggler 🔷 Undulator
Modify Run SHADOW/source
PlotXY: = Histo1: = InfoSh SourcInfo Spectrum
Optical System:
♦ oe 1
Add oe Modify oe Delete oe Delete all Run SHADOW/trace
PlotXY: = Histo1: = Info on: = BLViewer
Macros:
1
Add macro Edit Delete macro Run macro
Working directory:
Browser J/Users/rreininger/Documents/Scratch

How to include Optical Constants

○ ○ ○ X Sha	X Shadow VUI 1.12			
ShadowVUI Edit Run Results	PreProcessors Util Tools Help			
Courset	Mirror/Filter/Lens Ref/Abs (PreRefl)			
Source:	Multilayers (Pre_MLayer)			
🔷 Geometrical 💠 BM 💠 Wiggler	Crystals (Bragg)			
	Waviness			
Modify Run SHADUW/source	Create Conic Surface Mesh			
PlotXY: = Histo1: = InfoSh SourcInfo Spectrum				

PreRefl inputs			
Accept Cancel Help			
Element/Compound formula	Minimum energy [eV]		
Density [g/cm3]	Maximum energy [eV] Ž0000.000		
File for SHADOW (trace):	Energy step [eV]		

Run two times in Mac

Inputs for BRAGG preprocessor			
Accept Cancel Help			
Structure type ZincBlende	Symbol 1st element	File name (for SHADDW)	
Lattice cte a 5.4309402	Symbol 2nd element	Calculate Diffraction Prof No	
	Absorption Yes		
H miller index	Temperature factor		
K miller index	From Energy [eV]		
L miller index	To Energy to [eV]		
	Energy step [eV]		

Single Optic Focusing

Source

Shadow plots using SRCalc (uses Igor), available

Mirror Illumination

Intensity not included Only Rays

tot:49903 SDx:0.26961 SDy:44.232

Mirror Illumination

Mirror Illumination

Mirror Illumination Reflectivity

From geometry

From geometry

From geometry

From geometry

Figure errors and/or Diffraction

From geometry

State of the Art XUV beamline: IEX @ APS

State of the Art XUV beamline: IEX @ APS

26

VLS Grating

 $\mathbf{n} \mathbf{k} \lambda = \mathbf{Sin}[\alpha] + \mathbf{Sin}[\beta]$

$$k = k0 \left(1 + 2 b2 w + 3 b3 w^{2} + ...\right)$$

$$f20 = \frac{\cos [\alpha]^{2}}{p} + \frac{\cos [\beta]^{2}}{q} + 2 b2 m k0 \lambda;$$

$$f30 = \sin [\alpha] \frac{\cos [\alpha]^{2}}{p^{2}} + \sin [\beta] \frac{\cos [\beta]^{2}}{q^{2}} + 2 b3 m k0 \lambda$$

VLS Grating

 $\mathbf{n} \mathbf{k} \lambda = \mathbf{Sin}[\alpha] + \mathbf{Sin}[\beta]$

$$k = k0 \left(1 + 2 b2 w + 3 b3 w^{2} + ...\right)$$

$$f20 = \frac{\cos [\alpha]^{2}}{p} + \frac{\cos [\beta]^{2}}{q} + 2 b2 m k0 \lambda;$$

$$f30 = \sin [\alpha] \frac{\cos [\alpha]^{2}}{p^{2}} + \sin [\beta] \frac{\cos [\beta]^{2}}{q^{2}} + 2 b3 m k0 \lambda$$

Grating in Shadow

• •	X Define grating		
Accept Cancel			RP 80,000
Ruling type Polynom	Poly. line density coeff: linear 1.6549200 Poly. line density coeff: quadratic	Diffraction order	σx: 0.99 mm σy: 0.0032 mm 1000.000 eV 1000.0125eV
	<pre>poly. line density coeff: third power 2.0000000e-06</pre>		
	Poly. line density coeff: fourth power	Mount type TGM/Seya	$\begin{array}{c} 0 \\ -10 \\ -15 \\ -20 \end{array}$
Lines/CM (at origin)	Auto tuning No		-2012 1 1 1 1 1 -3 -2 -1 0 1 2 3 x (mm)

R. Reininger, Nucl. Instrum. Methods Phys. Res. A 649, 139 (2011).

R. Reininger, Nucl. Instrum. Methods Phys. Res. A 649, 139 (2011).

Crystal Diffraction

The asymmetry parameter

$b = -(sinQ_1) / (sinQ_2)$

Crystal Monochromator

Six-reflection meV-monochromator for synchrotron radiation

J. Synchrotron Rad. (2011). 18, 605-611

T. S. Toellner,* A. Alatas and A. H. Said

Crystal transmissions and Flux

 $F_{f} = F_{i} \frac{I_{f}}{I_{i}} \frac{\Delta E}{E} 1000, F_{i} = 4 \times 10^{14} \frac{photons}{s \ 0.1 \% BW}, \Delta E = 10 \ eV, E = 23725 \ eV$

2.4 m long ID

E = 23.725 keV

Σx = 273 μm, Σy = 12 μm

 $\Sigma' x = 11 \mu rad$, $\Sigma' y = 4.7 \mu rad$

C 1,1,1

FWHMx:2.4 eV FWHMy:1.09e-05 rad Flux=3.0e13 ph/s

Crystal transmissions and Flux

High heat load mono

34

Crystal transmissions and Flux

Crystal transmissions and Flux

Divergence (x10⁻⁶ rad)

35