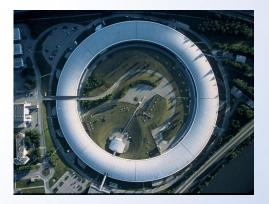
X-RAY RAMAN SCATTERING

SIMO HUOTARI UNIVERSITY OF HELSINKI, FINLAND

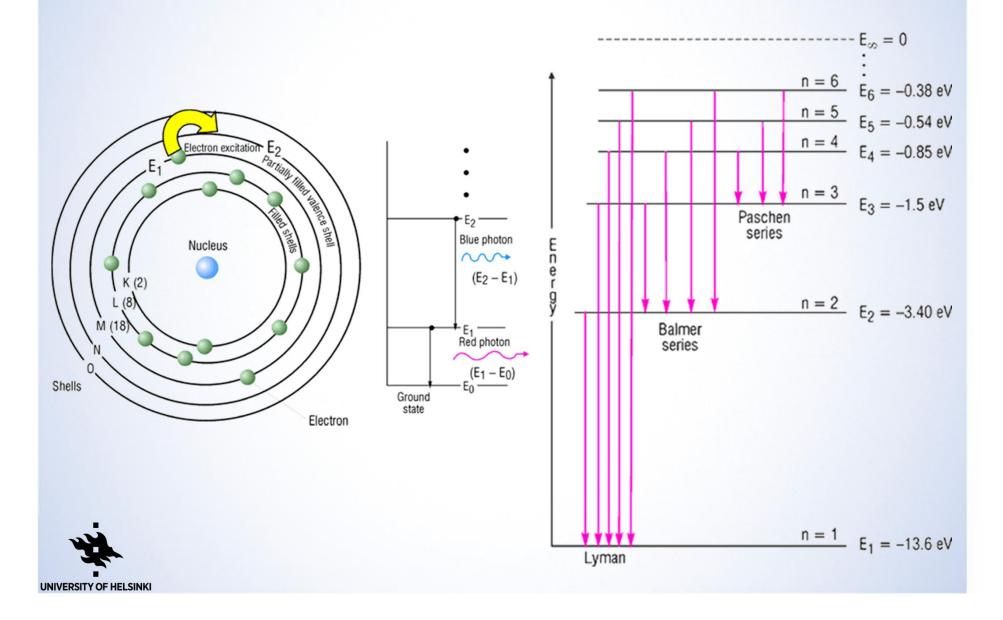
HELSINKI ELECTRONIC STRUCTURE & INELASTIC X-RAY SCATTERING = **HELIXS**

Finland (population 5,5 million)



Helsinki (capital of Finland)

Simo Huotari, M. Hakala, K. Hämäläinen, J. Niskanen, S. Galambosi, J. Hashemi, A. Akbari, M. Aramini, K. Ruotsalainen, J. Inkinen, A. Kallonen, J. Koskelo, A.-P. Honkanen, A. Musazay



http://helixs.physics.helsinki.fi http://www.fsruo.fi

ESRF, Grenoble, France

ENERGY LEVELS IN ATOM

CONTENT

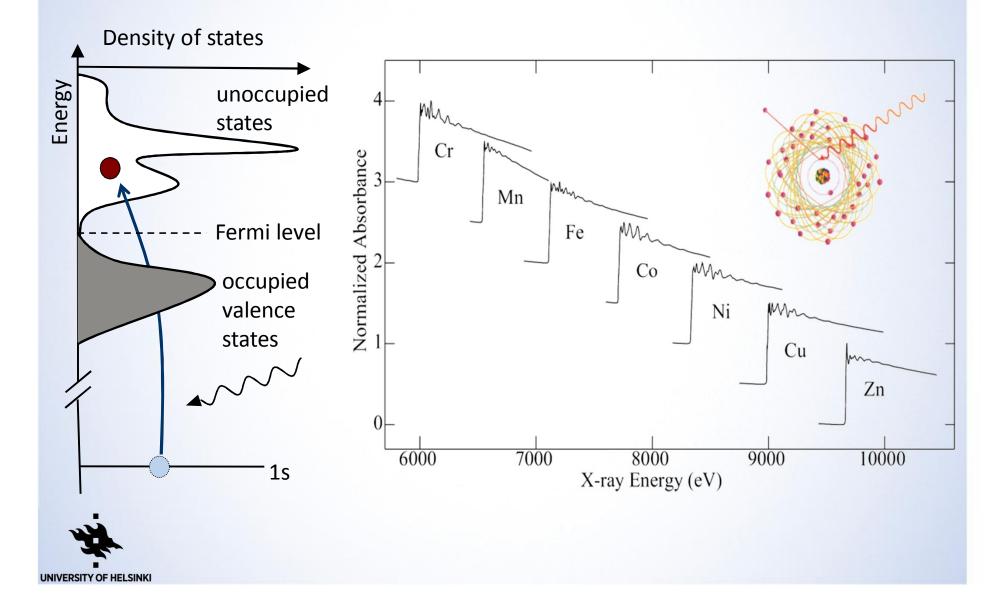
1. X-ray absorption spectroscopy

2. Compton scattering

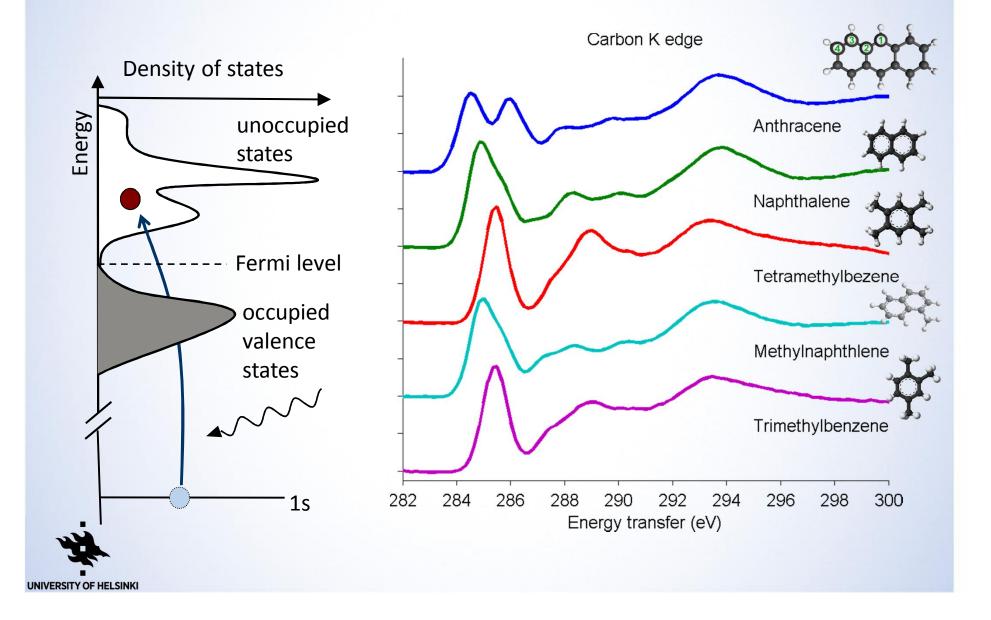
3. X-ray Raman scattering

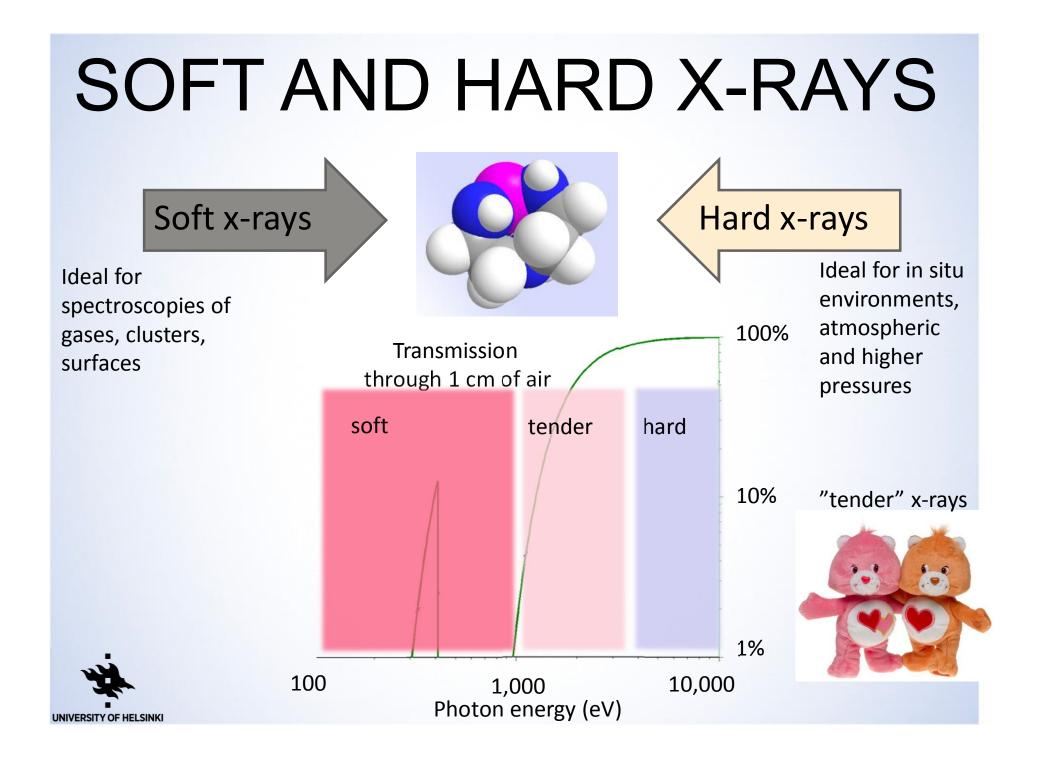
4. Equivalence of absorption & X-ray Raman

ABSORPTION EDGES


absorption coefficient: $\mu \approx \frac{\rho Z^4}{AE^3}$ $\rho = \text{density}$ A = atomic mass Z = atomic number E = photon energy

 $I_0 \exp(-\mu t)$


Measure at least one of:


- transmission
- fluorescence yield
- electron/ion yield
- electron current

HARD X-RAY EDGES

SOFT X-RAY EDGES

ABSORPTION EDGE ENERGIES

Element	K 1s	L ₁ 2s	L ₂ 2p _{1/2}	L ₃ 2p _{3/2}	M ₁ 3s	$M_2 3p_{1/2}$	M ₃ 3p _{3/2}		
1 H	13.6			< →	C xdb.lbl.gov/Section1/Pe	riodic_Table/X-ray_Elements.htn	si.		
2 He	24.6*				ray Properties	of the Eleme	nts 💼	Berl	
3 Li	54.7*	in el	ectron	1 1.00	Click on an element to	alka	li metals	Real I	
4 Be	111.5*		5 (eV)	H Hydrogen 3 6.94	4 901 Be	symbol:	sitional metals	C N O F	
5 B	188*	voits	5 (27)	Lithium 11 22.90	12 2431 name	red gas white synthetically non	metals 13 24.00 Al	Carbon Netroper Oxygen Placeole 14 7800 15 3037 16 3208 17 31.41 18 Si P S CI	New 259 Ar
6 C	284.2*			50dam 19 39.00 K	Magnosium 20 4008 21 41.96 22 47.90 23 50.94	24 31.996 25 54.94 26 55.85 27 58.93	28 36.30 29 66.35 30 66.37 31 66.37 Ni Cu Zn Ga	Silicon Pherghanan Sadar Obloviev 32 72.59 33 74.92 34 78.96 35 79.90 36	-
7 N	409.9*	37.3*		37 th G	Carlier Scandern Trainin Variations 38 87.62 39 66.01 40 91.22 41 92.91 Sr Y Zr Nb	Otherenium Managamenic Iron Coluit 42 96.94 43 968 44 101.07 45 102.91 Moo Tic Ru Rh	Net.M1 Copper Zinc Gallier 45 104-12 47 107-10 48 112-41 49 114-50 Pd Ag Cd In In	Generation Access Selence Breene 50 118.00 51 127.50 53 128.00 54 Son Sbb Te I 1 1 1	111.00 Xe
8 O	543.1*	41.6*		Stochum S5 112 97	Strontum Yorum Zeccourn Nobum S6 13733 57 13.01 72 178.49 73 18026 Ba La> Hf Ta Ta Burnerr Textmann Interver Interver Interver	Melybdexam Techneture Rathenum Shedure 74 181.54 75 186.21 76 190.23 77 192.22 W Ree Oss Ir Tunnoten Flowarm Occurrent Indom	Palladam Silver Cadmam Indiam 78 106.09 79 196.07 80 200.09 81 201.07 Ptt Au Hgg TI Indiam Indiam	Im Antmony Tellmann Johns 82 202.95 83 205.05 84 2000 85 000 86 Pbb Bi Poo Att Load Promethy Promethy Promethy Attempty Attempty Attempty	Contraction Contra
9 F	696.7*			37 OZN Fr Transform	88 (220) 89 27/01 104 (241) 105 (242) Ra ACt R D D D D Reference and Company	106 (246) 107 (240) 108 (246) 109 (266) Sg Bh Hs Mt Seatergum Betrum Recourt Methodian	10 070 111 070 112 077)	114 (06) 116 (08) 11	8 030
10 Ne	870.2*	48.5*	21.7*	21.6* Lan	thanide series • Ce Pr	60 14424 61 1746 62 10036 63 15106 1 Nd Pm Sm Eu	Gd Tb Dy Ho	Er Tm Yb Lu	_
11 Na	1070.8†	63.5†	30.65	20.01	Actinide series to The Pa	Neodymium Promethiam Samarium Europium 92 238.00 93 237.05 94 (240 95 (243)	Gaddinium Terthum Dyrgeonum Holmam 36 047 97 049 98 0313 99 0323 Chin Bk Cf Ess	Eduar Thalium Yearbian Laterum 100 (257) 101 (250) 102 (250) 103 (242) Film M.C. N.O. L.P	The "orange book"
12 Mg	1303.0†	88.7	49.78	49.50	Dodum Protectinian	Unations Neptonium Plutations Americans	Curum Berkelum Californium Enstreaum	Fermum Mendelevium Nobelium Laseencium	1.2NL:7-54/20 80 2
13 Al	1559.6	117.8	72.95	72.55					Center for X-Ray Optics
14 Si	1839	149.7*b	99.82	99.42					and Advanced Light Source
15 P	2145.5	189*	136*	135*					X-RAY DATA
16 S	2472	230.9	163.6*	162.5*					
17 Cl	2822.4	270*	202*	200*					BOOKLET
18 Ar	3205.9*	326.3*	250.6†	248.4*	29.3*	15.9*	15.7*		Albert Thompson Ingolf Lindau David Attwood Piero Pianetta
19 K	3608.4*	378.6*	297.3*	294.6*	34.8*	18.3*	18.3*		Eric Gulfikson Arthur Robinson Malcolm Howells James Scofield Kwarje-Je Kim James Underwood
20 Ca	4038.5*	438.4†	349.7†	346.2†	44.3 †	25.4†	25.4†		Kwarig-Je Kim James Underwood Janos Kirz Douglas Vaughan Jeffrey Kortright Gwyn Williams
21 Sc	4492	498.0*	403.6*	398.7*	51.1*	28.3*	28.3*		Herman Winick
22 Ti	4966	560.9†	460.2†	453.8†	58.7†	32.6†	32.6†		January 2011 January 2017 Generaly of California Refelses Co.9720
a N									This work was executed on set the first Life Second and all founds contract multiplication and the Contract one of the Second Second

http://xdb.lbl.gov/Section1/Periodic_Table/X-ray_Elements.html

UNIVERSITY OF HELSINK

http://xdb.lbl.gov/

\$1,000,000 QUESTION

Element	K 1s	L ₁ 2s	$L_2 2p_{1/2}$	L ₃ 2p _{3/2}	M ₁ 3s	$M_2 3p_{1/2}$	M ₃ 3p _{3/2}			
1 H	13.6									
2 He	24.6*	in ol	ectron			+ la a a				
3 Li	54.7*	volts (eV)			Q: Is there any way to measure these soft-x-ray absorption edge					
4 Be	111.5*									
5 B	188*						•			
6 C	284.2*				in a v	vay tha	it is not	surface		
7 N	409.9*	37.3*			conci	tivo ra	auiro a	vacuum, or		
8 O	543.1*	41.6*					-			
9 F	696.7*				could	be us	ed with	complex		
10 Ne	870.2*	48.5*	21.7*	21.6*				•		
11 Na	1070.8†	63.5†	30.65	30.81	samp	ne env	ironme	ntsr		
12 Mg	1303.0†	88.7	49.78	49.50						
13 Al	1559.6	117.8	72.95	72.55						
14 Si	1839	149.7*b	99.82	99.42						
15 P	2145.5	189*	136*	135*						
16 S	2472	230.9	163.6*	162.5*						
17 Cl	2822.4	270*	202*	200*						
18 Ar	3205.9*	326.3*	250.6†	248.4*	29.3*	15.9*	15.7*			
19 K	3608.4*	378.6*	297.3*	294.6*	34.8*	18.3*	18.3*			
20 Ca	4038.5*	438.4†	349.7†	346.2†	44.3 †	25.4†	25.4†			
21 Sc	4492	498.0*	403.6*	398.7*	51.1*	28.3*	28.3*			
22 Ti	4966	560.9†	460.2†	453.8†	58.7†	32.6†	32.6†			
	N.									

THEN YOU COULD DO ALL THIS...

PRL 109, 046401 (2012)

PHYSICAL REVIEW LETTERS

week ending 27 JULY 2012

Determining the In-Plane Orientation of the Ground-State Orbital of CeCu₂Si₂

T. Willers,¹ F. Strigari,¹ N. Hiraoka,² Y. Q. Cai,³ M. W. Haverkort,⁴ K.-D. Tsuei,² Y. F. Liao,² S. Seiro,⁵ C. Geibel,⁵ F. Steglich,⁵ L. H. Tjeng,⁵ and A. Severing¹

...and more!

Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition

Sean R. Shieh^{a,1}, Ignace Jarrige^b, Min Wu^{c,d}, Nozomu Hiraoka^e, John S. Tse^d, Zhongying Mi^{a,2}, Linada Kaci^a, Jian-Zhong Jiang^c, and Yong Q. Cai^b

^aDepartments of Earth Sciences, and Physics and Astronomy, University of Western Ontario, London, ON, Canada N6A 5B7; ^bPhoton Sciences, Brookhaven National Laboratory, Upton, NY 11973; ^cInternational Center for New Structured Materials and Laboratory of New Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; ^dDepartment of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2; and ^eNational Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

The formation of sp³ bonding in compressed BN

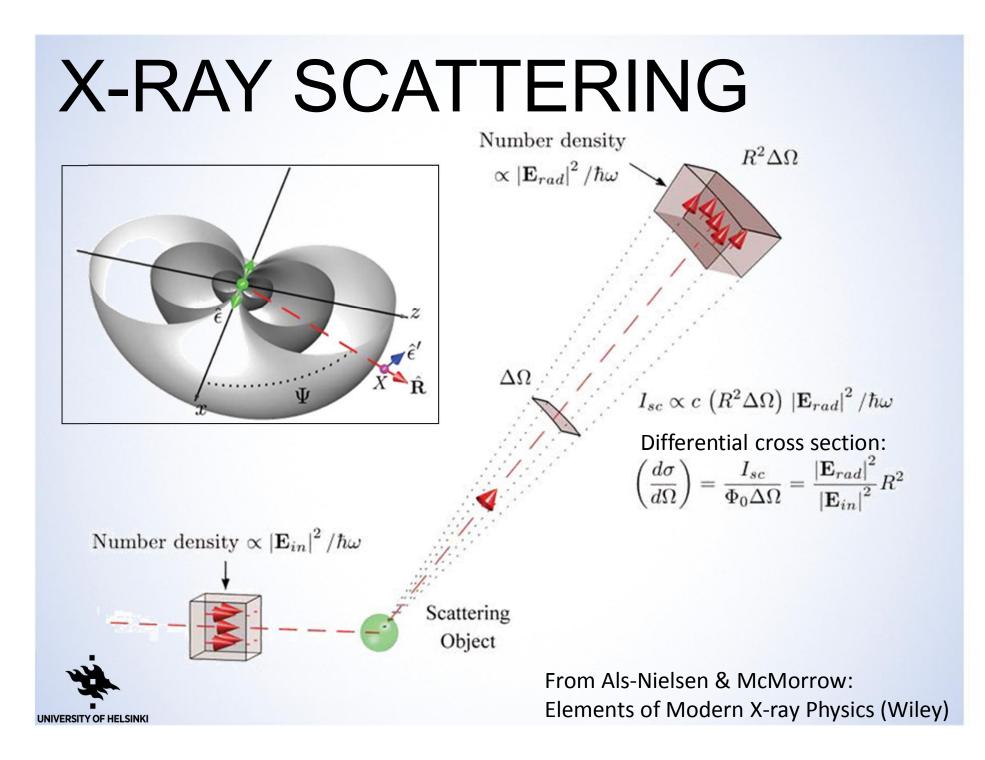
YUE MENG*^{1,2}, HO-KWANG MAO², PETER J. ENG³, THOMAS P. TRAINOR^{3†}, MATTHEW NEWVILLE³, MICHAEL Y. HU^{1,2}, CHICHANG KAO⁴, JINFU SHU², DANIEL HAUSERMANN^{1,2} AND RUSSELL J. HEMLEY²

Structure Glass

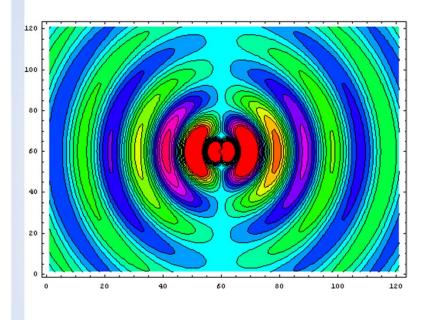
Structure and Properties of Dense Silica

Min Wu^{1,2}, Yunfeng Liang^{2,3}, Jian-Zhong Jiang¹ & John S. Tse^{1,2}



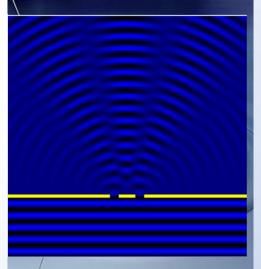

AS

Microscopic structure of water at elevated pressures and temperatures


Christoph J. Sahle^{a,b,1}, Christian Sternemann^a, Christian Schmidt^c, Susi Lehtola^b, Sandro Jahn^c, Laura Simonelli^d, Simo Huotari^b, Mikko Hakala^b, Tuomas Pylkkänen^b, Alexander Nyrow^a, Kolja Mende^a, Metin Tolan^a, Keijo Hämäläinen^b, and Max Wilke^c

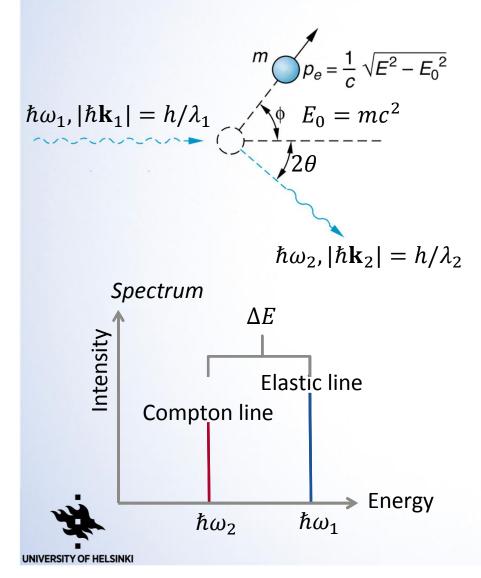
X-RAY / MATTER INTERACTION

ELASTIC SCATTERING FROM AN ELECTRON (CLASSICAL)


Thomson cross section

$$\left[\frac{d\sigma}{d\Omega}\right]_{TH} = r_0^2 \left|\hat{e}_1 \cdot \hat{e}_2\right|^2 = r_0^2 \left(\frac{1 + \cos^2 2\theta}{2}\right)$$
Unpolarized radiation
$$r_0 = 2.8 \cdot 10^{-15} \text{ m} \qquad \text{(THOMSON)}$$

$$r_0^2 = 0.079 \text{ barn}$$


1 barn = 10^{-24} cm² (cross section of a uranium nucleus)

UNIVERSITY OF HELSINKI

INELASTIC SCATTERING FROM AN ELECTRON (CLASSICAL)

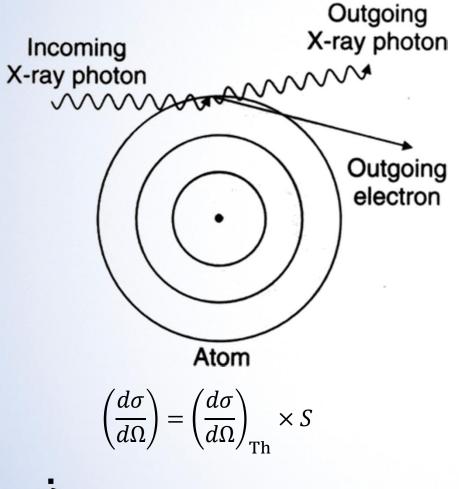
1. Particle (photon) scatters off another particle (electron). Collision is inelastic \Rightarrow loss of energy

2. Laws of energy and momentum concervation hold:

$$\hbar c |\mathbf{k}_1| - \hbar c |\mathbf{k}_2| = \sqrt{E_0^2 + p_e^2 c^2 - E_0}$$

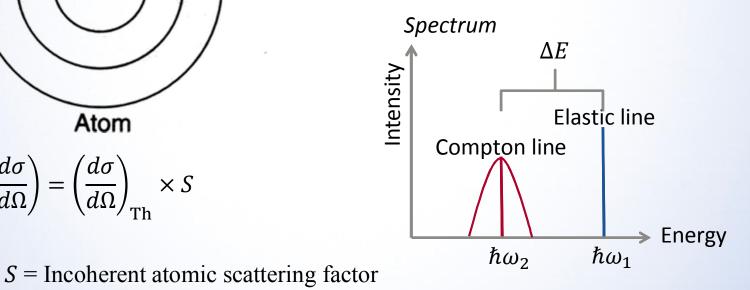
$$\hbar \mathbf{k}_1 - \hbar \mathbf{k}_2 = \mathbf{p}_e$$

3. This leads to a well defined red-shift of the photon energy upon scattering \Rightarrow the so-called **Compton shift**

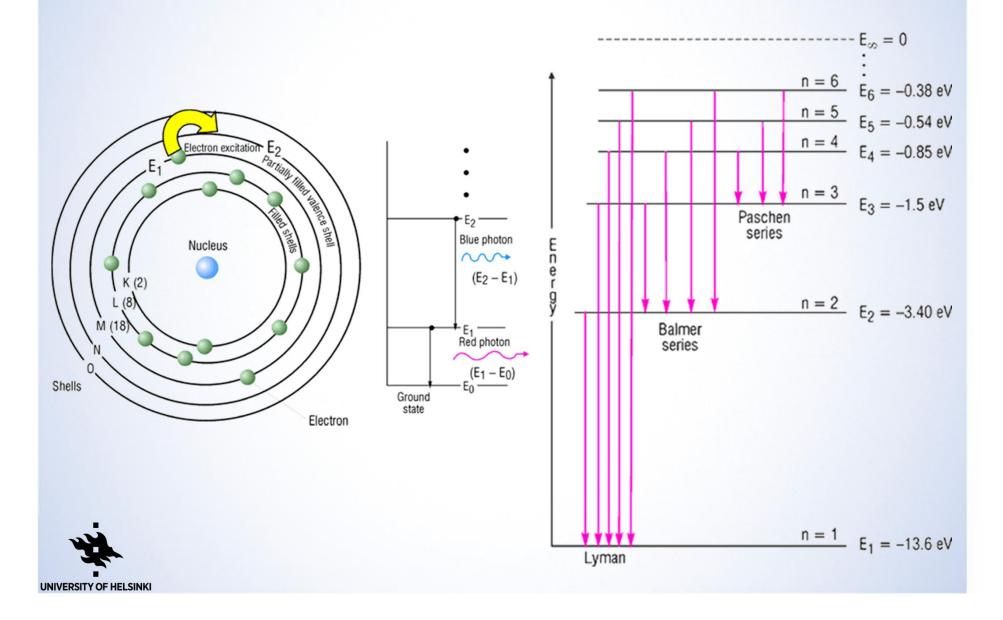

Arthur Holly Compton, Nobel prize 1927

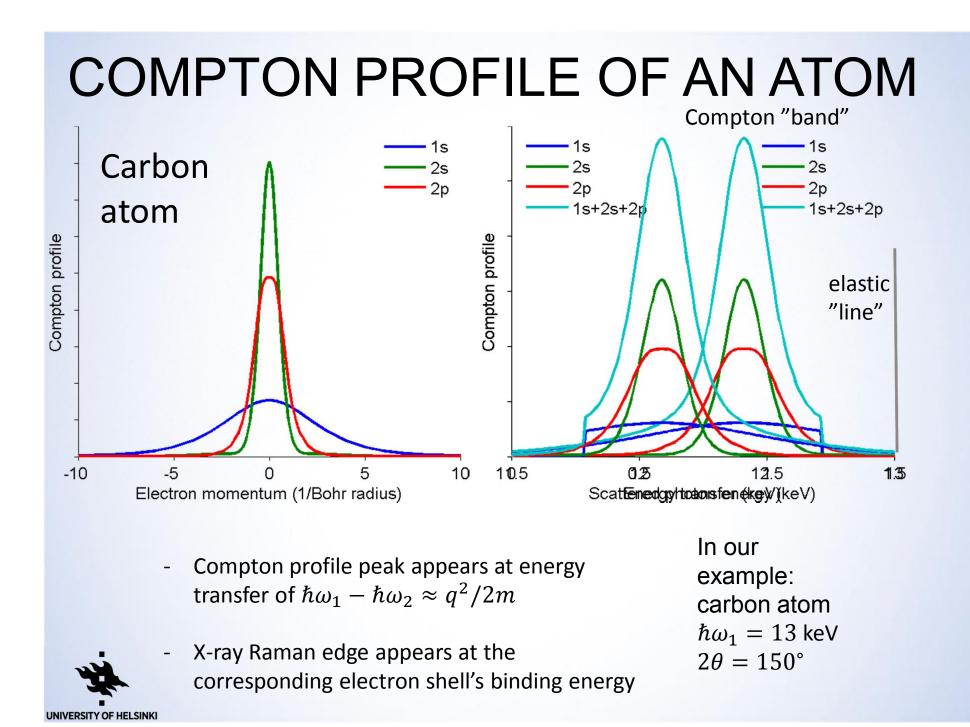
EXERCISE: COMPTON SCATTERING

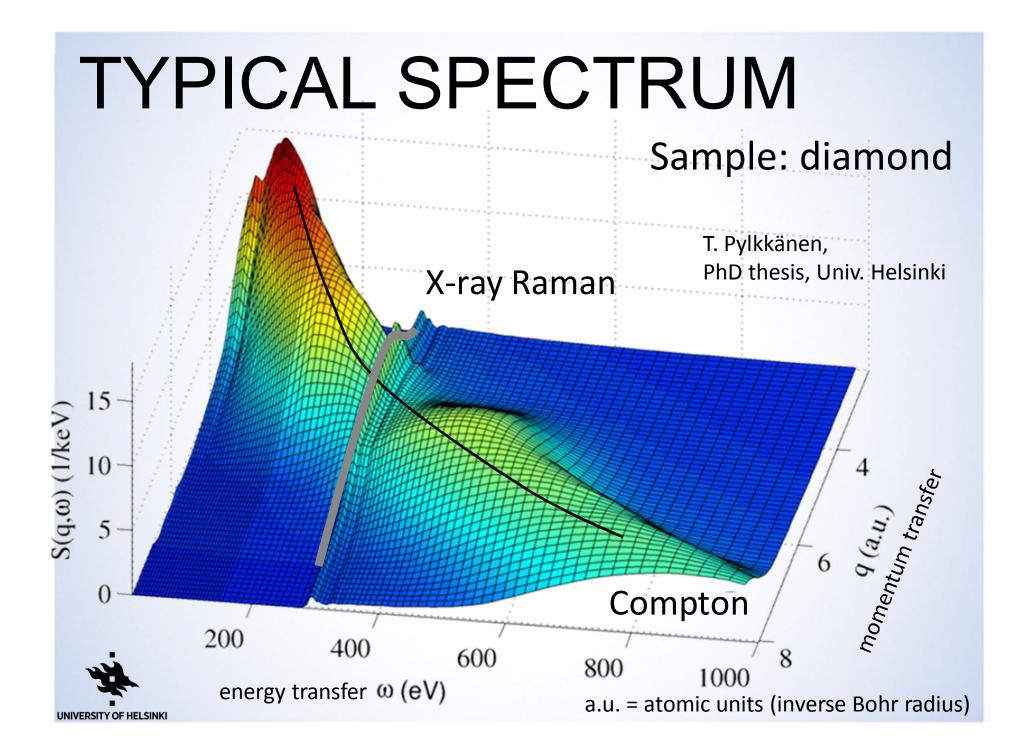
- 1. Derive the wavelength change $\Delta\lambda$ in Compton scattering for an electron that is initially at rest, photon scattering angle 2θ .
- 2. How does $\Delta\lambda$ depend on the initial wavelength?
- 3. Bonus question: What is the Compton shift in energy as a function of momentum transfer q?

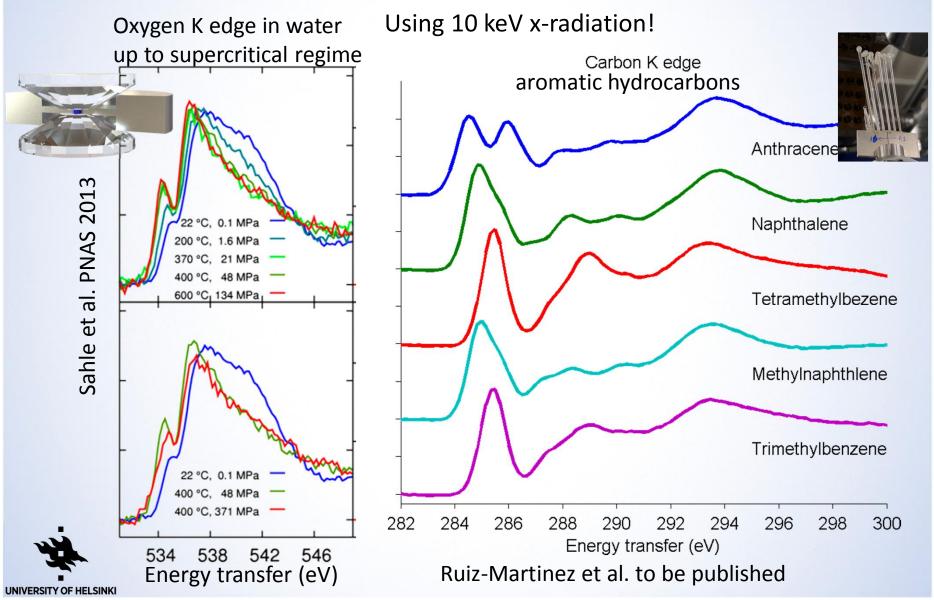


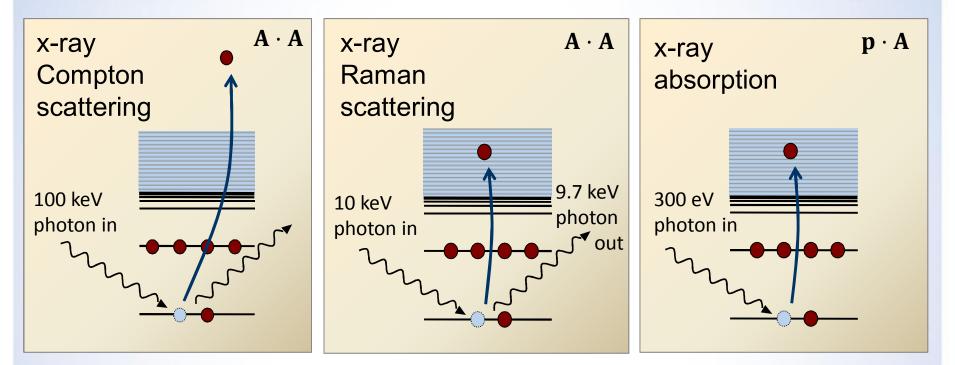
INELASTIC SCATTERING FROM AN ATOM (CLASSICAL)

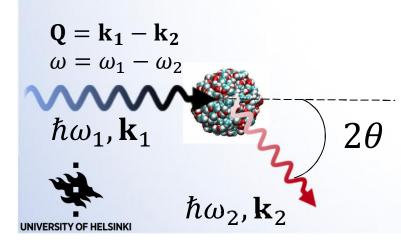

Electrons bound to atoms are constantly on the move!


Initially electrons are not at rest in general \Rightarrow Doppler shift (from the laws of conservation of energy and momentum)



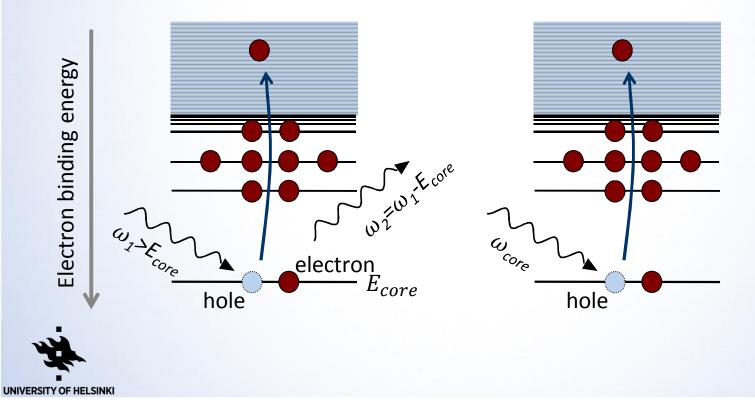

ENERGY LEVELS IN ATOM





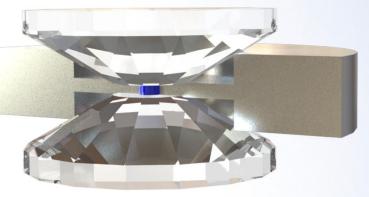
X-RAY RAMAN SPECTRA

X-RAY RAMAN SCATTERING



In Compton & XRS we measure the dynamic structure factor $S(\mathbf{Q}, \omega) \propto \sum_{f} |\langle f | \exp(i\mathbf{Q} \cdot \mathbf{r}) | i \rangle|^{2}$ $e^{i\mathbf{Q}\cdot\mathbf{r}} = 1 + i\mathbf{Q}\cdot\mathbf{r} - (\mathbf{Q}\cdot\mathbf{r})^{2}/2 + \cdots$

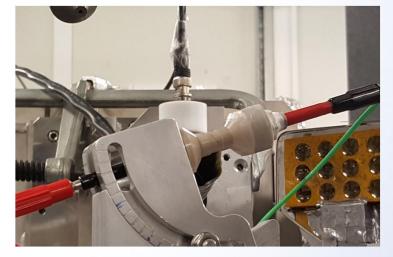
INELASTIC SCATTERING


Equivalence of:

Scattering	Absorption	Excitations
optical Raman	infrared absorption	vibrational (meV)
x-ray Raman	soft x-ray absorption	core-electrons (eV, keV)

HARD X-RAYS: BENEFITS

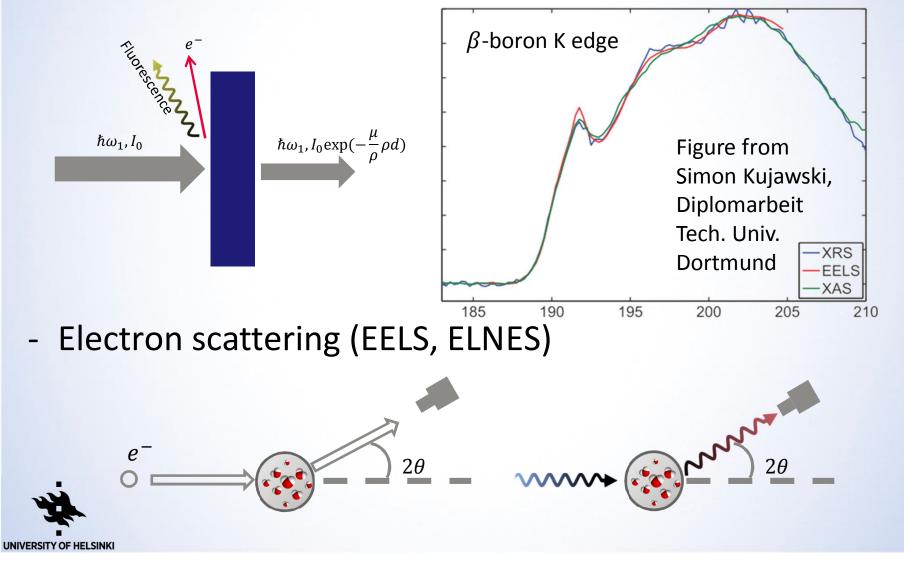
Access to extreme conditions and in-situ environments (chemical reactors, etc)



Diamond anvil cell: high pressure

Bulk sensitivity

Not limited to dipolar transitions



Li-ion battery: electrochemistry

COMPLEMENTARY TECHNIQUES

- Soft x-ray absorption (XAS, XANES, EXAFS)

WHY IS IT CALLED X-RAY "RAMAN"

Indian J. Phys. 2 387-398 (1928)

A new radiation* C V RAMAN, F.R.S. [Plate 1]

8. Possible X-ray analogies

If a quantum of radiation can be absorbed in part and scattered in part in the optical region of the spectrum, should not similar phenomena also occur in X-ray scattering? The type of scattering discovered by Prof. Compton may possibly be only one of numerous other types of scattering with modified frequencies, some with a line spectrum and some in the nature of continuous radiation. The extreme ultra-violet region of the spectrum may also furnish us with numerous examples of the new type of radiation, which clearly occupies a position intermediate between scattering and fluorescence.

1. Introduction

I propose this evening to speak to you on a new kind of radiation or lightemission from atoms and molecules. To make the significance of the discovery clear, I propose to place before you the history of the investigations made at Calcutta which led up to it. Before doing so, however, a few preliminary remarks regarding radiation from atoms and molecules will not be out of place.

BELOVED CHILD HAS MANY NAMES (FINNISH PROVERB)

(Non-resonant) X-ray Raman scattering (XRS) Non-resonant inelastic x-ray scattering (NRIXS or NIXS)

Not to be confused with:

- Nuclear resonant inelastic x-ray scattering (NRIXS or NIXS)

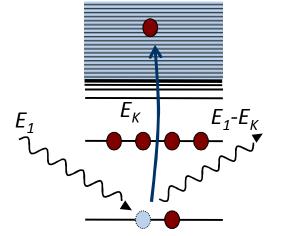
- Raman scattering (RS) (i.e., as is done with lasers for vibrational spectroscopy)

- Resonant X-ray Raman scattering (RRS) (older name for resonant x-ray emission spectroscopy, RXES)

We must do something to clear this nomenclature up...

The Finnish brown bear (*Ursus arctos*): Karhu, otso, mesikämmen, metsän kuningas, kontio, oksi, nalle, ohto, ...

REFRESH


X-ray Raman scattering is inelastic x-ray scattering from core electrons

Powerful technique rapidly growing in popularity with 3rd generation synchrotrons

Use hard x-rays to study soft x-ray edges

bulk-sensitive measurements easy access to extreme environments

Additionally momentum-transfer gives access to non dipole transitions

energy transfer E_{K} momentum transfer **q**

