





### Extended X-Ray Absorption Fine Structure

#### Santiago J. A. Figueroa

Researcher Beamline coordinator XAFS2 <u>santiago.figueroa@lnls.br</u>

#### **EXAFS**

5<sup>th</sup> School on X-Ray Spectroscopy Methods



Campinas, 23 de Agosto de 2016





1.Interaction of X-rays with matter
 2.Basics aspects about XAFS
 3.Understanding the EXAFS equation





Primary competing processes and some radiative and non-radiative decay processes







 The excess energy of X-rays is transferred to the ejected photoelectron.





- What is XAFS?
  - XAFS studies the details of the x-ray absorption coefficient around an absorption edge.
  - It reveals a wealth of information regarding the geometric and electronic structure of materials.







## Main characteristics of XAS technique

- Most atoms of the periodic table can be studied;
- · Selectivity at the atomic level;
- Sensitive to oxidation state, coordination number and interatomic distance kind of atom;
- Structure of amorphous and crystalline materials and highly diluted systems;
- · Solids, liquids and gases can have their specific local structure.
- Different environments (pressure, temperature, magnetic field, gas ...)
- Limitations ....
- We can not distinguish neighboring atoms in the periodic table;
- Only the local order can be precisely determined;
- A source of X-ray wavelength variable is required.







XAFS: Study the details of the variation on the absorption coefficient (fine structure) after the edge.

$$\begin{array}{ccc} K & 1s \rightarrow p \\ L_1 & 2s \rightarrow p \\ L_2 & 2p_{1/2} \rightarrow s, d \\ L_3 & 2p_{3/2} \rightarrow s, d \end{array}$$





## X-ray attenuation

Absorption coefficient:



- μ : linear absorption coefficient
- t : thickness

μt: absorbance

 $I_1 = I_0 \exp(-\mu t)$ 

Includes contributions from all scattering and absorption precesses

Mass absorpion coefficient:

Atomic absorption coefficient:







## **Basic XAFS experiment – sequential mode**



$$\mu t = \log\left(\frac{I_0}{I_1}\right)$$















The most important criterion: The best signal to noise ratio for the element of interest

Always transmission, if possible Most accurate method, best overall S/N counting statistics of about 10<sup>-4</sup> from beamlines with more than 10<sup>8</sup> photons/s)

#### **Fluorescence for very diluted samples**

A specific signal reduces the large background (but maximum tolerable detector count-rate can result in very long measuring times).

#### **Total electron yield (TEY)**

for surface sensitivity and surface XAFS (adsorbates on surfaces) TEY for thick samples that cannot be made uniform.

**XEOL X-ray excited optical luminescence** VIS/UV detection from luminescent samples







XANES is the region ~50 eV around the edge





**XANES :** transitions to unoccupied states (localized and continuum)

low energy photoelectron  $\rightarrow$  multiple scattering (MS)

Information content

Fermi energy
Projected density of unoccupied states
Oxidation states

- Coordination symmetry

**EXAFS:** high energy photoelectron  $\rightarrow$  single scattering + some important MS

Information content

- interatomic distances
- disorder
- •coordination numbes
- •Bond-angle distributions
- Partial pair distribution
- •Vibrational properties.









#### XANES: pre edge structure

















 $E \rightarrow$ 







EXAFS is the region from 50 - 1200 eV after the edge





- •Photon energy  $(E\gamma)$  > Binding Energy  $(E_1)$ : Photoelectric effect.
- •Kinetic energy of the photoelectron ( $E_c$ )=  $E_{\gamma}$   $E_L$
- •Wave-Particle duality: The photoelectron travel as a esferic wave:  $E_c = hv$
- •Wavevector of the photoelectron: K

$$k = \sqrt{\frac{2m_e(E_{\gamma} - E_L)}{\hbar^2}}$$

•Quantical state of the photoelectron: superposition of the propagating wave with the retrodispersed waves on the neightbourgs

•Phase difference of the incoming and outgoing waves:  $\Delta \phi$ 

 $\Delta \varphi \approx 2kR$ 

•Interference in between propagating waves and retrodispersed ones. This moduls the absorption coefficient.

- •Oscilation frequence: 2R
- •Oscilation amplitudes: number of neightbourgs and disorder













#### Principal hypothesis:

- Final states are plane waves
- •Gaussian disorder
- Dipolares transitions
- •One active electron
- Photoelectron dispersion is single

Sayers et al., PRL 27, 1204 (1971)

$$\mu(E) \propto \sum_{f}^{E_{f} > E_{F}} \left| \left\langle f \left| \hat{\mathbf{e}} \bullet \vec{r} \right| i \right\rangle \right|^{2} \delta(E_{f})$$

$$\chi(k) = \sum_{i} \frac{N_{i}}{kR_{i}^{2}} S_{0}^{2} F_{i}(k) e^{-2k^{2}\sigma_{i}^{2}} e^{\left[\frac{-2R_{i}}{\lambda}\right]} \sin[2kR_{i} - \phi_{i}(k)]$$

Estructural parameters



Atomic parameters: Absoption and dispersion of the Photoelectron





























CNPEM











 $\chi x \ K^2$ 

 $\chi \times K^2$ 

#### Understanding the XAFS equation









Gaussian Disorder:  $\sigma = 0.03$  Å

























- Final states are plane waves
- •Gaussian disorder
- Dipolares transitions
- •One active electron
- Photoelectron dispersion is single

 $\mu(E) \propto \sum_{f}^{E_{f} > E_{F}} \left| \left\langle f \left| \hat{\mathbf{e}} \bullet \vec{r} \right| i \right\rangle \right|^{2} \delta(E_{f})$ 

Sayers et al., PRL 27, 1204 (1971)

NPEM

$$\chi(k) = \sum_{i} \frac{N_{i}}{kR_{i}^{2}} S_{0}^{2} F_{i}(k) e^{-2k^{2}\sigma_{i}^{2}} e^{\left[\frac{-2R_{i}}{\lambda}\right]} \sin[2kR_{i} - \phi_{i}(k)]$$

Estructural parameters



Atomic parameters: Absoption and dispersion of the Photoelectron









# Studying a system with one technique is equivalent to studying it with zero techniques

- Bruce Ravel citing anonymous source







## Obrigado pela sua atenção!

Questions, please email me: <u>santiago.figueroa@lnls.br</u>

- More info about XAFS:
- https://speakerdeck.com/bruceravel?page=2
- http://cars.uchicago.edu/ifeffit/Mailing\_List
- http://xafs.org/Tutorials
- http://www.ixasportal.net/ixas/
- http://cars.uchicago.edu/ifeffit/Documentation
- Acknowlegments: To Gustavo Azevedo, Valmor Mastelaro, Anatoly Frenkel por some slides